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Structural and dynamical aspects of avoided-crossing resonances in a three-level � system
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In a recent publication [Phys. Rev. A 79, 065602 (2009)], it was shown that an avoided-crossing resonance
can be defined according to level-structural or dynamical criteria. We propose an experiment to observe the
difference between the two definitions in a three-level � system using microwave fields coupling hyperfine
magnetic sublevels in alkali-metal atoms.
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I. INTRODUCTION

The concept of “resonance” is ubiquitous in physics.
A resonance implies variations of different characteristic
properties with respect to one parameter within the resonance
width, but the extremal points for the different properties do
not necessarily coincide. In a recent publication [1], we studied
the definition of an avoided-crossing resonance in quantum
systems with discrete energy levels. The parameter values of
minimal splitting and of maximal transition probability do
not coincide in general. In this brief paper, we propose a
simple physical setting, i.e., a three-level system subjected to a
two-photon transition, where the difference between structural
and dynamical aspects of the resonance may be observed.

II. THE MODEL

Consider a three-level system in a � configuration (a Raman
two-photon setup, as seen in Fig. 1) that is described, in
a laser-adapted interaction picture, by the time independent
Hamiltonian (h̄ = 1) [2]

H = 1
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where �1 and �2 are the Rabi frequencies of the transitions
and δ1 and δ2 are the detunings as shown in Fig. 1. When
the lasers are turned off (�1 = �2 = 0), the atomic states
are uncoupled and the energy levels of H cross each other
at δ1 = 0 and δ1 = δ2. When the coupling lasers are turned
on, these crossings become avoided crossings, and transitions
between the atomic energy levels at each resonance may occur
(see Fig. 2).

An analytical diagonalization of the full Hamiltonian (1)
is possible, but hardly illuminating. To have simple formulas
and gain some understanding, approximations will be useful.
Among the two resonances, we shall focus on the one at
δ1 = δ2. The distance between them is δ2, and since the
splitting of each avoided crossing is proportional to the Rabi
frequencies �1 and �2, the avoided crossings will be well
isolated, leading to clean transitions, as long as δ1 ∼ δ2 �
�1,�2. Under this condition, the state |2〉 is scarcely populated

and can be adiabatically eliminated to give an effective
two-level Hamiltonian

Heff =
(−δeff �eff

�eff δeff

)
, (2)

which corresponds to an effective coupling between states
|1〉 and |3〉 with effective coupling strength �eff and effective
detuning δeff :
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4δ1
, δeff = 1
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8δ1
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As described in [1], when the diagonal and nondiagonal
terms in a two-dimensional Hamiltonian depend on the same
parameter (δ1 in this case), the location of the resonance is not
uniquely defined.

III. STRUCTURAL AND DYNAMICAL DEFINITIONS

From a “structural” perspective of the energy-level diagram,
the resonance may be defined as the point where the distance
between the two branches of the avoided crossing is minimum,
which is given by the condition
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For the condition δ1 ∼ δ2 � �1,�2, the solution to the this
equation is approximately given by (up to fourth-order terms
in the frequencies)
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From a “dynamical” perspective, the resonance is defined
by the value of δ1 for which the transition probability from
state |1〉 to state |3〉 is maximum. Using Heff , this probability
is easily computed as

P13 = �2
eff
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eff + �2
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(6)
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FIG. 1. Simple Raman three-level setup with energy levels |1〉,
|2〉, and |3〉, and detunings of the two lasers with respect to atomic
transitions and coupling strengths (Rabi frequencies) �1 and �2.
Initially, states |1〉 and |3〉 are assumed to be uncoupled, where
�p = 0. For the experimental determination of the different shifts,
a coupling between states |1〉 and |3〉 becomes necessary, where
�p �= 0.

and shows a maximum at δeff = 0, which corresponds to
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The expressions (5) and (8) are separated by a dynamical shift
�D given in this approximation by

�D = (δ1)S − (δ1)D ≈ �2
1�

2
2

4δ3
2

, (9)

which is plotted in Fig. 3 versus the ratio between the Rabi
frequencies. There is good agreement between the exact
dynamical shift and the approximation (9) for weak couplings.
For strong couplings, the perturbative approach breaks down,
but Eq. (9) still gives a good estimate.

IV. EXPERIMENTAL DETERMINATION

The “dynamical resonance” in Eq. (8) can be determined
experimentally by preparing the system in state |1〉 for each δ1
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FIG. 2. (Color online) Bare (black solid line) and dressed (red
dashed line, �1 = �2 = 0.5δ2) energy levels as a function of δ1/δ2.
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FIG. 3. (Color online) Exact dynamical shift computed by nu-
merically diagonalizing the full three-level Hamiltonian (1) (solid
lines) as a function of the ratio between the coupling strengths. The
approximate expression for the dynamical shift (9) is plotted with
dotted lines.

and looking for the maximum probability of finding state |3〉.
The experimental determination of the minimum level splitting
(“structural resonance”) requires more work. One way is to use
a third, auxiliary weak probe field connecting states |1〉 and |3〉,
as in Fig. 1 with �p �= 0. This transition may be electric-dipole
forbidden, such as a magnetic-dipole-allowed transition, which
is usually much weaker than electric-dipole transitions, a
good thing in this context since we are interested in probing
the dressed energy levels without excessively perturbing the
original system.

The Hamiltonian describing the full system (including the
probe field) takes the time-dependent form H (t) = H + W (t),
since, in general, there is no interaction picture in which
the full Hamiltonian is time independent. Here, H is the
Hamiltonian of the original system already given in Eq. (1),
and the time-dependent perturbation is given by W (t) =
�p

2 (|3〉〈1|eiνt + H.c.), where ν = δ1 − δ2 − δ13, and δ13 is the
detuning of the probe field with the |1〉 ↔ |3〉 transition (see
Fig. 1).

We shall examine hereafter the resonance at δ1 ≈ δ2 (see
Fig. 2). The dressed states will be labeled with increasing
energy (ε1 < ε2 < ε3), so we have to measure the energy
difference between ε3 and ε2 for determining the structural
resonance.

We shall now consider H as a zeroth-order Hamiltonian
weakly perturbed by W (t), and use time-dependent perturba-
tion theory to obtain the transition rate from dressed state |ε2〉
to dressed state |ε3〉:

P|ε2〉→|ε3〉 =
∣∣∣∣−i

∫ t

0
dt ′〈ε3|W (t ′)|ε2〉ei(ε3−ε2)t ′

∣∣∣∣
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2
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�ε2 − ν2
(cos2 νt − cos νt cos �εt)

]
, (10)
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FIG. 4. (Color online) (a) Exact energy splitting �ε = ε3 − ε2

obtained by diagonalizing the three-level Hamiltonian (1) (black solid
line), compared to the energy splitting obtained by identifying one
of the maxima (in this case, the maxima around ν ∼ �ε) of the
P|ε2〉→|ε3〉 transition probability (red dashed line). In the t → ∞,
limit both lines converge (the calculation is for δ2t/2π = 125).
(b) Difference between the exact (probeless) position of the minimum
splitting (structural resonance) and the structural resonance obtained
from the probed system as a function of time (black solid line). This
difference goes to zero in the long-time limit as expected. The red
dashed line corresponds to the exact value of the dynamical shift �D ,
which is the precession required in the measurement of the structural
resonance. The time marked by an x in (b) corresponds to t = 2π/�D ,
the lower bound of the time required to resolve the dynamical shift
[see Eq. (11)]. �1 = 0.2δ2 and �2 = 0.5δ2.

with αij = 〈ε3|i〉〈j |ε2〉 and �ε(δ1) = ε3 − ε2. P|ε2〉→|ε3〉 will
show peaks at ν ≈ ±�ε. Thus, by changing the probe detuning
δ13 (sweeping the value of ν) and measuring the corresponding
transition rate for a fixed set of parameters of the probeless
system, the energy splitting between levels ε2 and ε3 is
determined. Following the same procedure for different values
of δ1, it is possible to find the minimum splitting and identify
the structural resonance.

The positions of the maxima of P|ε2〉→|ε3〉 will only
be located exactly at ν = ±�ε in the long time when
sin[(ν±�ε]t/2)

ν±�ε

t→∞−→ πδ(ν ± �ε) and the contribution of the
crossed term in Eq. (10) becomes negligible. At short times, the
positions of the maxima are shifted due to the δ1 dependence
of αij [see Fig. 4(a)]. To resolve the dynamical shift by this
method, this effect should be smaller than the dynamical shift
itself, which is indeed achieved at sufficiently long times, as
shown in Fig. 4(b).

As time increases, the peaks of P|ε2〉→|ε3〉 become narrower
(the width of each peak goes like 2π/t); so, to resolve the
dynamical shift, the probe beam should be applied for a time

t � 2π

�D

. (11)

In summary, for large enough times, both effects (the shift
due to the δ1 dependence of αij and the width of the peaks in

order to resolve the dynamical shift) can be overcome. Note
also that condition (11), which ensures narrow peaks, is more
demanding than the times required to get rid of the shift due
to the δ1 dependence of the αij [see Fig. 4(b)].

The height of the peaks grows with time as ∼�2
pt2/4;

to keep the perturbative treatment valid, this maximum
probability has to be smaller than one (weak probe field).
Combining this low-probe-intensity condition with the long-
time condition given above, we end up with a condition for the
probe-field amplitude �p:

�p � �2
1�

2
2

2δ3
2

. (12)

Actually, this is just an upper bound. The exact growth of the
height with time is given by (αjk)2�2

pt2/4, but the values of
the matrix elements αjk are bounded between 0 and 1.

V. SPECIFIC SYSTEMS

The most obvious setting for a Raman-transition experi-
ment is driving optical-stimulated Raman transitions in alkali-
metal atoms. Unfortunately, this appears to be a difficult
scenario in which to study this effect. Taking 87Rb, as an
example, for driving stimulated Raman transitions between
hyperfine ground levels, using lasers nearly resonant with
the D2 line (52S1/2 → 52P3/2 transition), typical parameters
are a detuning δ1 ≈ δ2 = 2π × 10 GHz and Rabi frequencies
�1 = �2 = 2π × 200 MHz. These parameters give a lowest-
order dynamical shift [Eq. (9)] of 400 Hz. However, with
an excited-state decay rate of 
 = 2π × 6.1 MHz, the rate
of spontaneous scattering from the Raman fields is around
Rsc ≈ 
(�2

1 + �2
2)/8δ2

1, or about 3.8 kHz. The problem here
is that the dressed states will be broadened at the kilohertz level,
and the interaction time of the probe will be limited; therefore,
the resolution of the probe will be too poor to resolve the
dynamical shift. Decreasing the scattering rate also does not
help much; for example, increasing the detuning to 100 GHz
leads to a scattering rate of only 38 Hz, but a dynamical shift
of only 400 mHz. The scattering rate becomes comparable to
the dynamical shift for a detuning of only 1 GHz, which is,
realistically, too small for precision measurements.

A more promising experimental realization is possible
by driving microwave transitions in the hyperfine structure
of the ground electronic level of atoms. Here, spontaneous
emission is completely ignorable, as the magnetic-dipole
transition lifetimes are much longer than any reasonable
laboratory time scale. In particular, we consider here the n2S1/2

ground state of alkali-metal atoms, which is split into two
hyperfine levels, F = I ± 1/2, where I is the nuclear-spin
quantum number. The three hyperfine sublevels corresponding
to the setup in Fig. 1 are |1〉 = |F = I − 1/2,mF = −1〉 and
|3〉 = |F = I + 1/2,mF = −1〉 for the two Raman-coupled
states, and |2〉 = |F = I + 1/2,mF = 0〉 for the intermediate
(“excited”) state. The degeneracy of the |2〉 and |3〉 states is
broken by applying a magnetic bias field Bbias = χ�Ehfs

µB(gJ −gI ) ,
where �Ehfs is the zero-field hyperfine splitting, gJ and gI

are the electronic and nuclear g factors, respectively, and
χ = (I + 1/2)−1. This represents the center of an avoided
crossing of the |1〉 and |3〉 states, and thus the splitting
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at this bias-field strength, �E31 =
√

1 − χ2�Ehfs, is insen-
sitive to first order to bias-field fluctuations. This reduces
the need for stringent experimental control over magnetic
fields, and the most important systematic error in measuring
the Raman resonances. With the same magnetic field, the
energy of the “excited” |2〉 state is above that of the |3〉
state by an amount given by �E23(Bbias) = gIµBBbias +
�Ehfs(

√
1 + χ2 −

√
1 − χ2)/2. For example, for 87Rb, with

�Ehfs = h × 6.835 GHz and I = 3/2, the bias field is Bbias =
1.219 kG, and the splittings are �E31 = h × 5.919 GHz for the
(nominal) Raman resonance, and �E23 = h × 860 MHz for
the �2 driving transition. The remaining (�1) driving transition
is given by the sum of the other two transition frequencies, or
�E21 = h × 6.779 GHz. Both Raman driving transitions are
driven by circularly polarized fields, while the probe field is
driven by a linearly polarized field.

Continuing with the 87Rb example, the Raman fields may be
applied with Rabi frequencies of �1 = �2 = 2π × 300 kHz,
corresponding to field intensities of about 7.6 W/cm2 on both
transitions. Microwave fields of this intensity, for example,
have been realized around 6.8 GHz in the near field of
an atom chip to manipulate a Bose-Einstein condensate
of 87Rb [3]. Thus, a field of this strength for the 6.8-GHz
transition is feasible, and the field for the 860-MHz transition
should similarly pose no problem. For a Raman detuning
δ1 ∼ δ2 = 2π × 1 MHz, the lowest-order dynamical shift
from Eq. (9) is 2.0 kHz.

In the choice of parameters here, it is also convenient to have
very different Raman transition frequencies (6.8 and 0.9 GHz
for the �1 and �2 fields, respectively) to control the secondary
ac Stark shifts that we have not explicitly accounted for. For
example, the 6.8-GHz �1 field driving the |1〉 → |2〉 transition
also couples the |3〉 → |2〉 transition at 0.9 GHz, albeit much
further off resonance. As long as the δ2 is held fixed, the
Stark shift of |1〉 caused by the �2 field is inconsequential,
as it simply causes a common shift of both structural and
dynamic resonances. However, the Stark shift of |2〉 caused by
the �1 field depends on δ1, and thus can cause an additional
contribution to the dynamical shift �D . However, this effect is
suppressed by the ratio of the detuning δ1 from the |1〉 → |2〉
transition to the detuning from the |3〉 → |2〉 transition. This
effect should thus be smaller than the lowest-order shift of
2.0 kHz by a factor of about 10−4, and is therefore negligible.
Note also that it is important to have Raman detunings much
smaller than the transition frequencies in order to suppress
the effects of Bloch-Siegert shifts. By a similar argument, the
contribution of the Bloch-Siegert shifts should be of the same
order as the secondary ac Stark shifts.

Uncertainties in the microwave frequencies are negligible
on the scale of kilohertz for fields derived from digital
synthesizers. However, the splitting at each detuning must
be determined to an accuracy finer than the 2.0-kHz shift.
Thus, to resolve this shift, the (6.8-GHz) probe beam should
be applied for a time much longer than 500 µs [Eq. (11)],
with a Rabi frequency small compared to 2π kHz [Eq. (12)].
The probe field then requires a correspondingly much lower
intensity, as compared to the Raman fields. The atoms will
also need to be well confined on ms time scales, without
inducing spontaneous emission. Loading laser-cooled atoms
into a dipole trap, formed by the focused light of a CO2 laser,
accomplishes this with negligible perturbation to the hyperfine
structure of the ground electronic state.

Care must also be taken in preparing the atoms for the
probe measurement. Since the goal is to measure the splitting
of the dressed states at a particular detuning, as described
above, we must prepare the atoms in only one of the dressed
states. This is effected, for example, by first optically pumping
the atoms (in the absence of the Raman fields, and with
only a small magnetic bias field of the order of 100 mG to
prevent mixing of states) into the |1〉 = |F = 1,mF = −1〉
bare state. This is accomplished by driving the 52S1/2,F =
1 → 52P3/2,F

′ = 1 optical transition with circularly polarized
light, while optically depumping the F = 2 ground hyperfine
level. The 1.2-kG field should then be turned on adiabatically
to produce the correct level configuration without inducing
any transitions. The Raman fields should then also be turned
on adiabatically, but far from Raman resonance. They can
then be adiabatically chirped to the desired Raman detuning,
transferring the atoms from |1〉 to |ε2〉. The probe field should
then be activated to attempt to drive atoms to the other
dressed state |ε3〉. Finally, the Raman fields should again be
detuned and adiabatically turned off, and the magnetic field
turned off adiabatically as well. The population transferred to
|ε3〉, and thus to |3〉 = |F = 2,mF = −1〉, is then measured
by fluorescence detection of the F = 2 population. Finer
resolution of the Raman splitting is also possible by employing
a Ramsey-interference technique, applying the probe in two
pulses separated in time.
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