
pressure affects the phonon spectrum essen-
tially by increasing all phonon frequencies,
we can explain the decrease in Tc observed in
many superconductors on compression, as
has been done recently for MgB2 (10, 29).

That Tc in boron increases substantially
with pressure may be due to one of the fol-
lowing: (i) The factor h 5 N(0)^I2& may
increase with pressure in B, thus suppressing
the effect of increasing ^v2&. The Hopfield
parameter, h, may also contribute to the in-
crease in Tc if the character of the conduction
electrons also changes under pressure, as in
s-d transfer. (ii) The ^v2& factor may actually
decrease with pressure if the phonon modes
responsible for electron-phonon coupling
soften under pressure. (iii) The parameter m*
decreases on compression, which would be
related to pressure-induced additional screen-
ing of the electron-electron interaction. Of
these, the first and third options are possibil-
ities: Both may be effective if B is approach-
ing a covalent instability (with h increasing),
as discussed by Allen and Dynes (30); or it
transforms to a compensated metal, as in the
cases discussed by Richardson and Ashcroft
(31). A similar increase in critical tempera-
ture (dTc/dP ' 0.05 K/GPa) is observed in
metallic S after transforming to the b-Po
structure at 160 GPa (32), suggesting that the
mechanism could be related.

We have found superconductivity in B at
pressures above 160 GPa. The pressure of
metallization is in the general range of (but
somewhat lower than) theory, which predict-
ed that the transition would be accompanied
by the loss of covalent bonding to form a
dense nonicosahedral structure (12). The
magnitude of Tc appears to be consistent with
such a transition and with an electron-cou-
pling origin for the superconductivity. This
work extends the range of electrical conduc-
tivity measurements to a record value of 250
GPa. These observations should stimulate
theoretical calculations of superconductivity
in elemental B and related low-Z substances.
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Observation of Chaos-Assisted
Tunneling Between Islands of

Stability
Daniel A. Steck, Windell H. Oskay, Mark G. Raizen*

We report the direct observation of quantum dynamical tunneling of atoms
between separated momentum regions in phase space. We study how the
tunneling oscillations are affected as a quantum symmetry is broken and as the
initial atomic state is changed. We also provide evidence that the tunneling rate
is greatly enhanced by the presence of chaos in the classical dynamics. This
tunneling phenomenon represents a dramatic manifestation of underlying clas-
sical chaos in a quantum system.

Quantum-mechanical systems can display
very different behavior from their classical
counterparts. In particular, quantum effects
suppress classical chaotic behavior, where
simple deterministic systems exhibit compli-
cated and seemingly random dynamics (1).

Nevertheless, aspects of quantum behavior
can often be understood in terms of the pres-
ence or absence of chaos in the classical limit.
In this report, we focus on quantum transport
in a mixed system, where the classical dy-
namics are complicated by the coexistence of
chaotic and stable behavior. We study quan-
tum tunneling between two stable regions
(referred to as nonlinear resonances or islands
of stability) in the classical phase space. The
classical transport between these islands is
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forbidden by dynamical “barriers” in phase
space. In contrast, quantum tunneling can
couple the two islands so that a wave packet
oscillates coherently between the two sym-
metry-related stable regions (2–14).

“Dynamical tunneling,” where the classi-
cal transport is forbidden because of the sys-
tem dynamics and not a potential barrier, was
originally introduced in the context of a two-
dimensional, time-independent potential (2).
Subsequently, it was found that the presence
of chaos could markedly enhance the tunnel-
ing rate in a driven, double-well potential (3),
and the role of a discrete symmetry in this
system was highlighted in the tunneling pro-
cess (4). In addition to symmetry, the pres-
ence of regular islands is important for pro-
ducing coherent tunneling, because the is-
lands cause localization of the Floquet states
(5), which are the analogs of energy eigen-
states in time-periodic quantum systems (1).
Thus, dynamical tunneling between islands
of stability is analogous to tunneling in the
simple double-well potential, where the lo-
calized eigenstates split into a symmetric/
antisymmetric pair, and the tunneling can be
understood in terms of the dephasing of this
nearly degenerate Floquet-state doublet. It
was found that the tunneling rate is correlated
with the degree of overlap of the tunneling
states with the chaotic region, again pointing
to the role of the chaotic sea in assisting the
tunneling transport (6). The possible en-
hancement of the tunneling rate because of
the presence of the chaotic region was under-
stood in terms of a three-level process, where
the tunneling doublet interacts with a third
state associated with the chaotic region. The
term “chaos-assisted tunneling” was intro-
duced (7, 8) to distinguish this process from
ordinary dynamical tunneling, which is a
two-state process. Chaos-assisted tunneling
has also been explained in terms of indirect
paths, which are multiple-step transitions that
traverse the chaotic region, as opposed to
direct paths, which tunnel in a single step and
are responsible for regular dynamical tunnel-
ing (9). Because of these coexisting direct
and indirect mechanisms, the presence of the
chaotic region produces large fluctuations in
the tunneling rate as the system parameters
vary, sometimes increasing the tunneling rate
by orders of magnitude.

Previous experimental work on dynamical
and chaos-assisted tunneling has mainly fo-
cused on wave analogies to these effects.
Chaos-assisted tunneling has been studied in
microwave billiards, where the enhancement
of mode doublet splittings due to classical
chaos has been detected spectroscopically
(15). The Shnirelman peak in the level spac-
ing distribution is a similar statistical signa-
ture of dynamical tunneling (16) and has
been observed in acoustic resonator (17) and
microwave cavity experiments (18). Finally,

another recent atom-optics experiment has
examined coherent tunneling in a double-well
optical lattice potential (19, 20).

Our experiment studies the motion of cold
cesium atoms in an amplitude-modulated
standing wave of light. Because the light is
detuned far from the D2 line (50 GHz, or 104

natural linewidths, to the red of the F 5 33
F9 transition, where F is the atomic hyperfine
quantum number), the internal dynamics of
the atom can be adiabatically eliminated (21,
22). The atomic center-of-mass Hamiltonian
can then be written in scaled units as

H 5 p2/2 2 2acos2(pt)cos(x) (1)

where x and p are the canonical position and
momentum coordinates, respectively, t is
time, and a is given by (8vrT

2/\) V0 [V0 is
the amplitude of the ac Stark shift corre-
sponding to the time-averaged laser intensity,
T is the period of the temporal modulation, \
is the reduced Planck constant, and vr is the
recoil frequency, which has the numerical
value 2p 3 2.07 kHz for this experiment);
more details on the unit scaling can be found
in (22). The quantum description of this sys-
tem is governed by one additional parameter,
the effective Planck constant \vk 5 8vrT, so
that the scaled coordinate operators satisfy [x,
p] 5 i\vk (note, however, that for the experi-
mental data we report momentum in units of
double photon recoils, 2\kL, which is equiv-
alent to the scaled momentum expressed in
multiples of \vk). The time-dependent potential
in this system can be decomposed into a sum
of three unmodulated cosine terms (23). One
of these terms is stationary, whereas the other
two move with velocity 6 2p, so that in the
limit of vanishing a, the phase space of this
system has three primary resonances, two of
which are symmetric partners about the p 5 0
axis. The value of a used in the experiment
was 10.5 6 5%. At this large value of a, the
central island has mostly vanished, leaving a
large chaotic region surrounding the two
symmetry-related islands (Fig. 1, A and B).
To study chaos-assisted tunneling, we pre-
pared the atoms in one of the resonances and
observed the atoms coherently oscillate be-
tween the two islands by monitoring the evo-
lution of the atomic momentum distribution.
The possibility of experimentally observing
chaos-assisted tunneling in this system has
been a subject of recent discussion (10–12),
and the tunneling and band structure in this
system were recently treated in an extensive
numerical study (10).

The basic experimental apparatus has
been described in detail in (22), although we
have made several major improvements, as
we now describe. To prepare the initial atom-
ic state, we first cooled and trapped 106 ce-
sium atoms from the background vapor in a
standard six-beam magneto-optic trap
(MOT), at a temperature of 10 mK (corre-

sponding to a Gaussian momentum distribu-
tion with sp/\kL 5 4). The atoms are then
further cooled and stored for 300 ms in a
three-dimensional, far detuned, linearly po-
larized optical lattice similar to that of (24).
After adiabatic release from the lattice, the
atoms achieve a temperature of 400 nK (sp/
\kL 5 1.4). The atoms are then optically
pumped to the F 5 4, m 5 0 magnetic
sublevel, resulting in a temperature of 3 mK
(sp/\kL 5 4). The atomic orientation is main-
tained with a 1.5-G bias field. A velocity-
selective, stimulated Raman pulse on the 9.2-
GHz clock transition (which is insensitive to
Zeeman shifts to first order) “tags” a narrow
velocity slice (of less than 1% of the atoms)
into the F 5 3, m 5 0 sublevel near p 5 0.
The Raman fields are generated with a setup
similar to that in (25), and the 800-ms square
temporal pulse yields a momentum slice with
a half-width at half-maximum of 0.03 3
2\kL. The remaining atoms are then removed
by applying low-intensity, circularly polar-
ized light resonant on the F 5 4 3 F9 5 5
cycling transition for 800 ms.

At this point, the atoms have been pre-
pared in a very narrow distribution about p 5
0, but they are not localized in position on the
scale of the standing-wave period. A one-
dimensional optical lattice is ramped on adi-
abatically so that the atoms localize in the
potential wells. The lattice is then suddenly
spatially shifted by 1/4 of the lattice period
(in several hundred ns) with an electrooptic
modulator placed before the standing-wave
retroreflector. After 6 ms of evolution in the
lattice, the atoms return to the centers of the
potential wells, acquiring kinetic energy in
the meantime. The resulting Gaussian mo-
mentum profile is peaked at 4.1 3 2\kL, with
a width sp 5 1.1 3 2\kL. This state prepa-
ration procedure produces a localized atomic
wave packet centered on one of the islands of
stability (Fig. 1, A and B). The three red
ellipses are the 50% contours of a classical
distribution with the same position and mo-
mentum marginal distributions as the Wigner
function. (The Wigner function has addition-
al structures that reflect the coherences of the
initial state.) The initial condition shown does
not reflect a slight distortion due to anhar-
monic motion in the lattice. The importance
of the extremely narrow velocity selection is
twofold. First, the atomic distribution must be
selected to be well within one photon recoil
of zero momentum, so that all the atoms load
into the lowest energy band of the lattice.
Then, in the deep-well limit, the atomic dis-
tribution becomes minimum-uncertainty
Gaussian (modulo the standing-wave period).
Second, only atoms whose momenta are
nearly a multiple of \kL will tunnel, as we
discuss further below. As the lattice only
imparts momentum in multiples of 2\kL, the
ramping and shifting of the lattice result in a
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distribution with an overall Gaussian enve-
lope but concentrated in narrow momentum
slices around n(2\kL) for integer n. This
structure indicates coherence of the wave
packet over multiple periods of the optical
lattice.

After the state preparation, the atoms are
subjected to the time-dependent interaction
described by Eq. 1, with a modulation period
of T 5 20 ms (\vk 5 2.08). The atoms are then
allowed to expand freely for 20 ms, after
which the optical molasses is turned on,
freezing the atoms in place. The fluorescence
of the atoms is collected on a charge-coupled
device camera. As a result of the long free-
drift time, this process yields a measurement
of the atomic momentum distribution. Be-
cause of the relatively large size (sx 5 0.15
mm) of the initial atomic cloud, the individ-
ual momentum slices are not resolved in the
measured distributions. To compensate for
the loss in signal that results from discarding
most of the atoms, we averaged the data
presented in this report over 20 iterations,
except for the distributions in Fig. 1D (100
iterations) and Fig. 5A (19 iterations). The
momentum distributions are sampled every
two modulation periods (40 ms) for all the
data presented here except for the high tem-
poral resolution data (Fig. 5A).

The measured evolution of the momentum
distribution (Fig. 1C) shows clear tunneling

oscillations between the initial momentum
peak and its symmetric partner, which is lo-
cated 8 3 2\kL away in momentum. Four
damped oscillations are apparent in this mea-
surement out to 80 modulation periods (1600
ms), and after this time the oscillations have
completely damped away. Four of the mo-
mentum distributions near the beginning of
the evolution are shown in more detail in Fig.
1D. During the first oscillation, nearly half of
the atoms appear in the secondary peak (26).

As mentioned above, only atoms with mo-
mentum of approximately a multiple of a
photon recoil momentum (or scaled momen-
tum of nearly a multiple of \vk/2) will tunnel.
This is clear from the requirement of symme-
try for tunneling to occur, because only states
that involve these special velocity classes are
coupled to their symmetric reflections (about
the p 5 0 axis) by two-photon transitions.
This is essentially the same condition re-
quired for Bragg scattering (27–29). The bro-
ken symmetry resulting from selecting other
velocity classes is formally equivalent to a
broken time-reversal symmetry (30) and sup-
presses the formation of symmetric/antisym-
metric doublets (30, 31). We can study this
broken symmetry directly by varying the Ra-
man detuning of the velocity-selection pulse
from the optimum value and monitoring the
effect on the evolution of the average mo-
mentum ^ p& (Fig. 2). The case with the stron-

gest momentum oscillations corresponds to
the data shown in Fig. 1, C and D. Also
shown are measurements with Raman detun-
ings corresponding to momentum offsets of
0.05 3 2\kL and 0.12 3 2\kL. In the former
case, the oscillations are partially suppressed,
and for the larger detuning, the tunneling
oscillations have mostly disappeared. Be-
cause of this sensitivity to the initial momen-
tum, the tunneling oscillations are not visible
without subrecoil velocity selection, as we
have experimentally verified (32). Addition-
ally, this effect is largely responsible for the
damping of the tunneling oscillations that we
observe, because the states near the edge of
the Raman velocity selection profile will not
tunnel as efficiently as the “resonant” states
at the profile center. The various states will
also tunnel at slightly different rates, leading
to dephasing of the oscillations, similar to
broadened excitation of a two-level system.
Hence, narrower velocity selection should
lead to longer damping times, although noise
and decoherence sources may also limit the
coherence of the oscillations.

We also verified that the tunneling is
strongest if the wave packet is initially cen-
tered on the island of stability. As the initial
wave packet is moving, we can displace the
initial condition in the x direction in phase
space simply by inserting a short delay time
where the standing wave is off before begin-
ning the driven pendulum interaction. The
oscillations in ^p& were compared for delay
times of 0, 3.8, 7.6, and 15.1 ms, correspond-
ing to displacements of 0, 1/4, 1/2, and 1
periods of the optical potential away from the
island center (Fig. 3). For the 1/4-period dis-
placement, the oscillations are suppressed,
but still present. The initial wave packet in
this case only weakly excites the tunneling
Floquet states and mostly populates the states
in the chaotic sea (resulting in diffusion
throughout the sea) and states in the outer
stability band (resulting in trapping of the

Fig. 1. Experimental observation of tunneling oscillations. (A) The classical phase space for the
experimental parameters. The islands of stability involved in the tunneling appear as two blue
regions inside the green chaotic region and are symmetric reflections about the p 5 0 axis. A
schematic of the initial atomic state is superimposed on the upper island in red, appearing as three
narrow ellipses. (B) Magnified view of the upper stability island and the initial condition. (C) The
measured evolution of the momentum distribution in time, showing several coherent oscillations
between the two islands, which are separated in momentum by 8 3 2\kL. In this plot, the
distribution is sampled every 40 ms (every two modulation periods). (D) Detailed view of the first
four highlighted distributions in (C), where it is clear that a substantial fraction of the atoms tunnel
to the other island (2).

Fig. 2. Comparison of tunneling oscillations for
different Raman detunings. The strongest oscil-
lations observed (v) correspond to Raman ve-
locity selection at p 5 0. The other two cases
are for velocity selection at p 5 0.05 3 2\kL
(f), where the oscillations are partially sup-
pressed, and p 5 0.12 3 2\kL (Œ), where the
oscillations are almost completely suppressed.
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wave packet at the high momenta). For the
1/2-period displacement, the oscillations are
completely suppressed, because the wave
packet is almost entirely trapped in the outer
stable region. For the longest delay, the wave
packet returns to the island center, and the
tunneling oscillations are once again present.
The amplitude of the oscillations is somewhat
suppressed in this case, however, because the
free evolution stretches the wave packet, and
hence the tunneling states are not as efficient-
ly populated.

So far, we have discussed the tunneling
oscillations and how they are affected by a
broken quantum symmetry and the initial lo-
cation in phase space, which are important
characteristics of dynamical tunneling. To
demonstrate chaos-assisted tunneling re-
quires further evidence, and an important test
is to compare the tunneling in the time-de-
pendent potential with tunneling in the ab-

sence of chaos. A sensible integrable coun-
terpart of the amplitude-modulated standing-
wave system arises by simply considering the
time-averaged potential, resulting in the
quantum pendulum. Because the initial dis-
tribution is centered outside the separatrix,
classical transport across the p 5 0 axis is
also forbidden in this system. However, there
is a well-known dynamical tunneling mech-
anism in the pendulum, high-order Bragg
scattering (27–29), which is a manifestation
of quantum above-barrier reflection (33). As
the wave packet is initially peaked near 4 3
2\kL, the dominant transport process is
eighth-order Bragg scattering. For the param-
eters in the experiment, the calculated eighth-
order Bragg period is around 1 s, which is
much longer than the 400-ms tunneling peri-
od in the (chaotic) driven pendulum. We
compared the evolution of ^p& for the driven
pendulum to the transport in the undriven
pendulum (Fig. 4), and indeed no coherent
oscillations are observed in the undriven case
during the interaction times measured in the
experiment. Hence, we observe that the clas-
sical chaos enhances the tunneling rate for
these experimental parameters, in the sense
that the tunneling in the presence of classical
chaos occurs at a substantially greater rate
than the tunneling in the integrable case.

Although it is customary to study time-
periodic systems in a stroboscopic sense, sam-
pling only at a particular phase of the modula-
tion as we have done up to this point, it is also
interesting to study the continuous tunneling
dynamics in our system. We studied the evolu-
tion of the momentum distribution during the
first half of the first tunneling period, sampling

the system at 1-ms intervals, or 20 times per
modulation period (Fig. 5A). The most obvious
aspect of this data is that the initial and second-
ary (tunneled) peaks exhibit complementary but
opposite momentum oscillations at the modu-
lation frequency. These oscillations can be ex-
plained in terms of the continuous motion of the
corresponding islands in phase space (Fig. 5B).
As the two islands have opposite momentum,
they move in opposite directions but oscillate in
momentum because of repulsion by the rem-
nants of the center island (34 ). In this
picture, the islands constitute a pair of non-
intersecting “flux tubes” (14 ) that remain
confined in separated momentum intervals.
The tunneling atoms can be viewed as a
realization of a dynamical Schrödinger cat,
because they represent a coherent superpo-
sition of two states separated in momentum
space, each one corresponding to motion in
a classical island of stability.

The evolution in Fig. 5A also shows
other interesting transport behavior. There
is another oscillation that proceeds more
quickly than the tunneling, which appears
as population oscillating between the initial
peak and the chaotic region near p 5 0.
This can be seen most clearly as an en-
hanced population near zero momentum
during the third, fifth, and seventh modu-
lation periods. This process also points to
chaos-assisted tunneling, because it sug-
gests that a third (chaotic) state is involved
in the transport between the two islands.

Note added in proof: After the submission
of this paper, we became aware of an exper-
iment reporting dynamical tunneling in a sim-
ilar setting (35).

Fig. 3. Comparison of chaos-assisted tunneling
for different free-drift times before the stand-
ing-wave interaction. The strongest oscillations
occur for zero drift time (v), where the initial
wave packet is centered on the island of sta-
bility as in Fig. 1A. The oscillations are substan-
tially suppressed for a 3.8-ms drift time (f),
which displaces the initial wave packet center
by 1/4 of a period of the standing wave. Tun-
neling oscillations are completely suppressed
for a 7.6-ms drift time (Œ), corresponding to a
1/2-period offset of the initial wave packet. For
a 15.1-ms drift time (V), the wave packet is
again centered on the island, and coherent
oscillations are restored.

Fig. 4. Comparison of chaos-assisted tunnel-
ing oscillations (v) to transport in the cor-
responding quantum pendulum (f). No tun-
neling oscillations are observed in the pen-
dulum case over the interaction times stud-
ied in the experiment.

Fig. 5. High temporal resolution tunneling measurement. (A) Evolution of the momentum
distribution during the first tunneling oscillation, sampled 20 times per modulation period. The two
peaks show complementary oscillations at the modulation frequency in addition to the slower
tunneling oscillation. Some population also appears in the chaotic region between the islands,
especially during the third, fifth, and seventh modulation periods (34). (B) Phase space plots (axes
as in Fig. 1A) at four different phases of the lattice modulation, showing the classical origin of the
fast oscillations in (A). At the start of the modulation period, the islands of stability are maximally
separated but move inward as they drift away from x 5 0 and return to their initial momenta by
the end of the modulation period. The two islands always remain separated in momentum and do
not cross the p 5 0 axis (34).
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Deterministic Delivery of a
Single Atom

Stefan Kuhr,* Wolfgang Alt, Dominik Schrader, Martin Müller,
Victor Gomer, Dieter Meschede

We report the realization of a deterministic source of single atoms. A standing-
wave dipole trap is loaded with one or any desired number of cold cesium atoms
from a magneto-optical trap. By controlling the motion of the standing wave,
we adiabatically transport the atom with submicrometer precision over mac-
roscopic distances on the order of a centimeter. The displaced atom is observed
directly in the dipole trap by fluorescence detection. The trapping field can also
be accelerated to eject a single atom into free flight with well-defined velocities.

The manipulation of individual atomic parti-
cles is a key factor in the quantum engineer-
ing of microscopic systems. These techniques
require full control of all physical degrees of
freedom with long coherence times. In com-
parison to well-established single-ion trap-
ping methods (1–4), a similar level of control
of neutral atoms has yet to be achieved be-
cause of their weaker interactions with exter-
nal electromagnetic fields.

Thermal sources of neutral atoms, such
as atomic beams, provide a flux of uncor-
related atoms with random arrival times.
However, there is great interest in a source
that would deliver a desired number of cold
atoms at a time set by the experimentalist.
Micromaser experiments, for example, use
a dilute atomic beam, which results in a
mean number of atoms inside the resonator
that is much less than 1. Poissonian statis-
tics, however, dictate that the probability of
having more than one atom inside the res-

onator simultaneously does not vanish; this
can easily destroy the ideal one-atom-maser
operation (5). Another possible application
is the controlled generation of single opti-
cal photons triggered by atoms entering a
resonator with mirrors of ultrahigh reflec-
tivity (a “high-finesse” resonator) one by
one (6, 7). Other experiments require the
placement of more than one atom into the
region of interest. Quantum logic gates (8)
can be implemented by entangling (2, 4, 9,
10) neutral atoms through their simulta-
neous coupling to the optical field of a
resonator (11, 12). This is possible with the
current technology, but in recent experi-
ments (13, 14) atoms enter the cavity in a
random way, rendering it impossible to
have a certain small number of atoms on
demand.

In comparison, our technique guarantees
control of the position of individual neutral
atoms with submicrometer precision. A
standing-wave dipole trap is used to store
any desired small number of cold atoms in
a laser field interference pattern, localizing
the trapped atoms to better than half of the
optical wavelength. Changing the laser pa-

rameters moves this interference pattern
along with the trapped atom in a prescribed
way. Whereas the transportation of atomic
clouds has recently been realized using
magnetic potentials (15), here we demon-
strate the controlled transport of a single
atom.

Optical dipole traps (16 –21) are based
on the interaction between an electric com-
ponent of the light field E and the induced
atomic electric dipole moment d, which is
proportional to E. The interaction energy
U 5 –^d z E&/2 is proportional to the local
light intensity. If the laser frequency is
smaller than the atomic resonance frequen-
cy, the atom is attracted to the region of
maximum intensity. Thus, the simplest op-
tical dipole trap is a focused laser beam.
Tuning the laser frequency far away from
all atomic resonances substantially reduces
the photon scattering rate, and the atom is
trapped in a nearly conservative potential.
In contrast, a magneto-optical trap (MOT )
(22) provides dissipative forces and serves
as a convenient source of single cold atoms
(23, 24). Atoms captured from the back-
ground gas interact with the near-resonant
light field of the MOT and scatter photons
from the laser beams. This fluorescence
signal monitors the number of trapped at-
oms in real time (Fig. 1). These atoms can
be transferred into a dipole trap superim-
posed on the MOT without any loss, thus
allowing us to experiment with a predeter-
mined number of atoms (24).

Our dipole trap consists of two counter-
propagating laser beams with equal inten-
sities and optical frequencies n1 and n2,
producing a position-dependent dipole po-
tential U(z, t) 5 U0 cos2[p(Dnt 2 2z/l)],
where U0 is the local trap depth, z is the
position of the atoms, l 5 1064 nm is the
optical wavelength (l 5 c/n1 ' c/n2, where
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