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This dissertation details an experimental investigation of the center-of-mass

motion of cesium atoms in a time-dependent lattice of light. The research described

here proceeds along two general lines. The first group of experiments considers a re-

alization of the quantum kicked rotor, where the optical lattice is applied in a series of

short, periodic pulses. In the regime where the classical description of this system is

strongly chaotic, the quantum and classical dynamics differ remarkably due to dynami-

cal localization, which is a manifestation of the quantum suppression of classical chaos.

Because this quantum localization is a coherent effect, it should be vulnerable to noise

or coupling to the environment, providing a mechanism for restoring classical behavior

at the macroscopic level. The experimental results confirm that dynamical localization

can be destroyed by adding noise and dissipation in a controlled way, and furthermore

they show that quantitative agreement between the experiment and a classical model

can be reached with a sufficient level of applied noise.

The second line of research considers the weakly chaotic regime, where stable

and chaotic regions coexist in phase space. The optical lattice is modulated sinusoidally

in these experiments to realize the amplitude-modulated pendulum. Careful prepara-

viii



tion of the initial atomic state, including stimulated Raman velocity selection, is neces-

sary to resolve the phase-space features. Coherent tunneling oscillations are observed

between two symmetry-related islands of stability in phase space. Because the classi-

cal transport between the islands is forbidden by the system dynamics, as opposed to a

potential barrier, the tunneling in this experiment is an example of dynamical tunnel-

ing. Additionally, the experimental data indicate through multiple signatures that the

tunneling is enhanced by the presence of the chaotic region in phase space, an effect

known as chaos-assisted tunneling.
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Chapter 1

Introduction

1.1 Classical Chaos

The study of chaos in dynamical systems originated near the end of the 19th century [1–

4]. At the time, Newtonian mechanics gave an impressively accurate description of the

motion of the bodies in the solar system, even prompting (somewhat serendipitously)

the discovery of Neptune, in order to explain a discrepancy between the predicted and

observed trajectories of Uranus. Although the problem of the dynamics of three gravita-

tionally interacting bodies was not (and still is not) analytically solvable in general, much

headway was made in the prediction of planetary locations by first considering only the

interaction of each planet with the sun, and then taking into account the perturbations

due to the interactions of the planets with each other. The apparent clock-like regu-

larity of the solar system and the accuracy with which the planetary motion could be

computed prompted the question of the stability of the solar system: would the solar

system continue in its usual fashion, with the planets maintaining their regular orbits,

or could the motion of the planets change drastically in the future? Showing that the

solar system is indeed stable, which amounts to showing that successive corrections

(perturbations) to the planetary motion converge, was at the time considered quite im-

portant. In fact, it was posed by Weierstrass, after a comment by Dirichlet, as one of

the prize questions in a contest, organized by Mittag-Leffler, in honor of King Oscar II

of Sweden and Norway. Henri Poincaré submitted a complex and innovative entry that

demonstrated the stability in the three-body problem and was named the winning entry.

However, after its publication it was pointed out that Poincaré had made a significant

1



2

error in his proof. Mittag-Leffler’s rather drastic response was to recall and destroy ev-

ery copy of the issue of Acta Mathematica in which Poincaré’s proof appeared. Poincaré

subsequently produced a revised work that instead appeared as the prize-winning entry;

however, this revised work contained the opposite conclusion: the stability of the solar

system could not be guaranteed. The ideas embodied in this work prompted Poincaré’s

later famous statement of how minute differences in the initial conditions of a system

can lead to wildly different outcomes. This is the key notion of chaotic dynamical sys-

tems, which has the consequence that small but inevitable errors in our knowledge of

the state of a system necessarily forbid accurate, long-term predictions of the system’s

evolution. Thus, despite the deterministic nature of chaotic systems, their dynamics

are inherently unpredictable, and they appear to be random.

Despite Poincaré’s remarkable achievement, the study of chaos did not really

take off for several decades, although there were several important results during this

period by George Birkhoff and Carl Ludwig Siegel, among others. In the 1950’s and

60’s the problem of stability in the three-body problem was revisited, and an important

result was obtained in stages by Andrei N. Kolmogorov, Vladimir I. Arnol’d, and Jürgen

Moser, in the celebrated KAM theorem [1, 2, 5]. This result restored the stability of

the solar system in the sense that it showed that certain configurations are stable while

others were unstable (at least in restricted versions of the solar system). Furthermore,

if the aforementioned perturbations are small, then most of the possible configurations

are stable. So, although the stability of the solar system seems to be assured, this whole

series of events resulted in the important recognition of the possibility of chaos.

The study of chaotic systems began in earnest with the advent of computers,

which facilitated the study of the inherent complexity of chaotic systems. This line of

study began with the work of Edward Lorenz, who found this same sort of instability in

numerical “experiments” studying a hydrodynamic system, which served as a very basic

model for the atmosphere [6]. Since then, chaos has been found to be ubiquitous both

in physics as well as in other disciplines, having found applications in such diverse phe-
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nomena as plasma confinement [7], laser dynamics [8], chemical reactions [9], cardiac

rhythms [10], and disease epidemiology [11]. Chaos is also important in the study of

dynamical systems, as chaos is the rule rather than the exception, despite the traditional

textbook view of physics.

The term “chaos” was introduced [12] to refer to this “deterministic random-

ness” in dynamical systems. However, it is still difficult to provide a definition of chaos

that is universally accepted. On the other hand, it is possible to point out some impor-

tant characteristics of systems that we refer to as being chaotic:

1. As mentioned before, a dynamical instability leading to unpredictability is a cen-

tral characteristic of chaos. Furthermore, this instability should be exponential

rather than linear in time, since in the linear case predictability is possible even

in the presence of a slight uncertainty if a sufficiently long history of the system is

known. In the exponential (chaotic) case, however, no additional predictive power

is gained by knowing the system history beyond the initial condition [13]. These

properties can be more formally quantified using the Lyapunov exponent and the

Kolmogorov-Sinai entropy [14, 15].

2. The instability is purely deterministic and intrinsic to the dynamics; the chaos is

not explained by external noise [13].

3. The instability should be global in the sense that chaotic behavior occurs for a

range of conditions and is not limited to a set of zero measure in phase space (de-

fined below), as in the unstable configuration of a perfectly inverted pendulum.

Also, the chaotic trajectories should be ergodic, so that they eventually wander

throughout the possible range of chaotic trajectories (although it is possible to

find disconnected regions of chaos in weakly perturbed Hamiltonian systems, as

we briefly discuss below, and in dissipative systems, the trajectories are only er-

godic over the “attracting set”).
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4. The system should be in some sense bounded, to avoid trivial exponential separa-

tion of trajectories, as in x(t) = x0 exp(t) for different x0. To keep the trajectories

confined as they separate from each other, there must be some notion of “stretch-

ing and folding,” as exemplified in the Smale horseshoe map [16]. Another related

property is that each point on a chaotic trajectory should lie arbitrarily close to a

periodic trajectory (i.e., a trajectory that repeats itself in finite time) [17].

5. The physical model of the system should be simple. It is surprising that simple

systems such as the three-body problem can give rise to such complicated and

unpredictable behavior, but complicated behavior is not surprising in a system

with many degrees of freedom. So, for example, although Brownian motion is

unpredictable, a deterministic physical model would include the collisional inter-

actions of a macroscopic number of gas molecules; hence, we would not call this

system chaotic. (Note that there are methods for analyzing data to distinguish

low-dimensional chaos from such high-dimensional noise [18, 19].)

When we return to the concept of integrability below, we can be more precise about the

meaning of chaos, at least in Hamiltonian systems.

As an example of the distinction between determinism and predictability in

chaotic systems, consider the standard map, which models one of the two classically

chaotic systems presented in this dissertation. The standard map is a set of two equa-

tions,

pn+1 = pn +K sinxn
xn+1 = xn + pn+1 ,

(1.1)

where the sole parameter K controls the “degree of chaos” of the map. This mapping is

iterated to determine a trajectory (x0, p0), (x1, p1), . . . , (xn, pn). These equations are,

of course, deterministic, in that there is no random element involved. In fact, though

this map looks quite simple, it gives rise to rich and complicated dynamics. The char-

acteristic lack of predictability in this map is illustrated in Fig. 1.1, where the standard

map is iterated with the same initial condition on four different computers. Even though
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Figure 1.1: Numerical iteration of the standard map, illustrating the inherently unpre-

dictable nature of chaotic systems. The same FORTRAN77 code was executed on four

modern computers to iterate the standard map for K = 10 and the initial condition
(x0, p0) = (1, 1). The spatial coordinate xn (taken modulo 2π) is plotted for the first
40 iterations of the standard map. Although nominally the same (64-bit, or around 15-
digit) “double precision” numerical representation was used on the different computers,

slight differences in the numerical rounding methods among the processors are rapidly

amplified as the iterations progress. Hence, the trajectories are identical only for the

first few iterations, and they become completely uncorrelated after about 25 iterations.
The processors employed here were a Motorola PowerPC 750 (solid line), an Intel Pen-

tium III (dashed line), a MIPS/SGI R10000 (dotted line), and a Cray SV1 processor

(dash-dotted line).

the results should be identical among the four computers, they only agree for around 16

iterations. Beyond this point the trajectories diverge, and prediction clearly becomes

meaningless. In principle, it is possible to make meaningful predictions over a larger

number of iterations by using greater precision in the computations. However, a linear

increase in prediction time requires an exponential increase in the numerical precision.

More importantly, for modeling physical systems, the precision with which the initial

state of the system is known nearly always limits the prediction time.

Despite this lack of predictability, chaotic systems can still be meaningfully
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studied. The unpredictability that we have indicated thus far is for a trajectory evolv-

ing from a particular initial state. The numerically generated trajectory, referred to as

a pseudotrajectory, diverges away from the real trajectory with the same initial condi-

tion; however, it is often possible to find another real trajectory with a slightly different

initial condition that shadows the pseudotrajectory in the sense that it remains close

to the pseudotrajectory for long times. This shadowing occurs for arbitrarily long times

in a restricted class of systems (“hyperbolic systems,” which are comparatively rare),

but shadowing occurs also for generic (nonhyperbolic) chaotic systems for long times

between “glitches” [20–22]. An important consequence of this effect is that global or

statistical predictions regarding ensembles of trajectories are still meaningful and can

be accurately computed, implying a robustness or structural stability under sufficiently

small perturbations [13]. So, the study of chaotic systems involves a shift to asking dif-

ferent kinds of questions, and in this way much progress has been made in uncovering

universal structure and behavior in chaotic systems. This notion was recognized early on

by Poincaré, who developed a geometric approach to studying dynamical systems that

we introduce in the next section.

1.1.1 Phase Space

Now we explore the concept of phase space, whose graphical depiction, the phase por-

trait, is a powerful tool for visualizing the behavior of dynamical systems. The phase

space of a dynamical system is the space of points that completely specify the state of

the system. In a coordinate representation, a dynamical system can be expressed as a

set of first-order differential equations:

∂tx1 = f1(x1, x2, . . . , xn)
∂tx2 = f2(x1, x2, . . . , xn)

...

∂txn = fn(x1, x2, . . . , xn)

(1.2)

(where ∂t ≡ ∂/∂t). This dynamical system is autonomous, since the fi do not explicitly

depend on time, but an external periodic drive can be accounted for by introducing time
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as an auxiliary coordinate [14]. Then the phase space for this system is the set of all n-

tuples (x1, x2, . . . , xn). The location in phase space at a particular time together with

the model functions fi then completely specify the state of the system for all values of

the time parameter t.

In this work we are interested in Hamiltonian systems. These systems are char-

acterized by a Hamiltonian functionH(xi, pi, t), such that the dynamics in terms of the

“canonical coordinates” xi and pi are given by Hamilton’s equations:

∂txi = ∂piH
∂tpi = −∂xiH .

(1.3)

The phase space is then simply the space of the canonical positions xi and momenta

pi. In the special case where the Hamiltonian is independent of time, the system is

said to be conservative in that the energy (the particular value of H for a given phase-

space point) is a conserved quantity, which follows directly from Eqs. (1.3). For time-

dependent Hamiltonian systems, the energy is not conserved, but all Hamiltonian sys-

tems are characterized by the more general conservation property that volumes in phase

space are preserved under time evolution as a consequence of Liouville’s theorem (and

as a special case of Poincaré’s integral invariants) [5].

The simplest Hamiltonian systems that one can consider are of one dimension

(or one degree of freedom) and time-independent, where the two-dimensional phase

space is spanned by the pair of variables (x, p). The trajectories in this phase space

are simply the surfaces of constant energy, because energy is a conserved quantity. We

illustrate such a phase space by considering the pendulum, where the Hamiltonian is

H(x, p) =
p2

2
− cos x . (1.4)

The phase portrait for the pendulum is shown in Fig. 1.2. There are several interesting

features to note in the phase portrait. One type of motion, known as “libration” (or

“oscillation”), appears as a set of elliptical contours, along which the trajectories flow

in the clockwise direction. These trajectories correspond to the pendulum motion one
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observes in the operation of a grandfather clock, and they emanate from a stable fixed

point at (x, p) = (0, 0), which corresponds to the resting configuration of the pendulum.

Another fixed point occurs at (x, p) = (π, 0) (which is equivalent to the point (−π, 0)

because of the spatial periodicity of the Hamiltonian), and describes the stationary but

unstable configuration of an inverted pendulum. Another distinct type of motion is “ro-

tation,” which appears as a set of curves that do not cross the p = 0 axis. For this motion

the trajectories flow to the right in the upper half-plane and to the left in the lower half-

plane. These trajectories correspond to more rapid motion of the pendulum such that

the pendulum does not reverse direction as in the librational case, but rather continues

Figure 1.2: Plot of the phase space for the pendulum. The curves (trajectories) are the

level sets of the pendulum Hamiltonian, Eq. (1.4). The different colors correspond to

trajectories beginning from different initial conditions.
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“over the top.” The boundary between the two types of motion is the separatrix, which

passes through the unstable fixed point. From this example, we can see that the phase

portrait gives a concise, visual summary of the possible dynamics of a system (although

the time-dependence of the trajectories must still be extracted from the equations of

motion).

In the experiments described later on, we study time-periodic (“driven”), one-

dimensional Hamiltonian systems. In this case, the phase space is of higher dimension

Figure 1.3: Phase space (Poincaré section) of a pendulum with a weak amplitude drive,

with Hamiltonian H = p2/2−(1+0.05 cos t) cosx. This “stroboscopic” plot is sampled
at every t = 2πn for integer n. As expected from KAM theory, most of the stable

structure of the pendulum is left unchanged by the weak drive. However, the separatrix

has broken down into a disordered region of chaos.
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than in the time-independent case, since time acts as an effective extra dimension. In

fact, it can be shown that these systems (referred to as 112-degree-of-freedom systems)

are formally equivalent to two-degree-of-freedom systems [23]. So, the flow of these

systems cannot be represented in a planar plot in the same way as one-dimensional sys-

tems. However, one can instead use a reduced phase plot, known as a Poincaré surface

of section, which is a plane of constant t, modulo the period of the external drive. The

plot constructed in this way consists of the intersections of the trajectories with the

surface of section, which appear as dots in the plane, each corresponding to the coor-

Figure 1.4: Phase space (Poincaré section) of a pendulum with a strong amplitude drive,

with Hamiltonian H = p2/2−(1+cos t) cos x. The stronger modulation here, compared
to Fig. 1.3, breaks down most of the stable pendulum structure, resulting in widespread

chaos.
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dinates (x, p) plotted once per drive period. This phase portrait still captures the full

dynamics, since each point in the phase plot uniquely determines all the successive

points in the trajectory. Sample phase portraits of this type are shown in Fig. 1.3, for the

pendulum with a weak, sinusoidal amplitude modulation, and in Fig. 1.4, for a strongly

amplitude-modulated pendulum, corresponding to the system studied in much greater

detail in Chapter 6. This surface-of-section technique also works for two-dimensional

autonomous systems, which have four coordinates in the full phase space, since the con-

served energy eliminates one of the coordinates, and the phase plane is taken to be at

a constant value of another of the coordinates (where the intersections are also usually

only plotted for one direction of passage through the surface). This technique can be

used to study systems with more than two degrees of freedom, but then the location in

the phase plane no longer uniquely determines the rest of the trajectory.

1.1.2 Integrability and Chaos

Now we will specialize our discussion of chaos to Hamiltonian systems, which will be

our main interest in this work. Before doing so, however, we note that nonlinearity is

an essential ingredient for producing chaotic behavior. Returning to the general dynam-

ical system described by Eqs. (1.2), if this system is linear, then the equations can be

expressed in terms of a matrix as

∂txi =
∑
j

Mij xj . (1.5)

This linear system of equations then has the solution [24]

xi(t) =
∑
j

exp(Mt)ij xj(0) , (1.6)

where exp(A) is the matrix exponential of the square matrix A, which is defined in

terms of the usual Taylor series expansion of the exponential function and exists for

any matrix. Hence, linear systems are quasiperiodic (i.e., having a discrete frequency

spectrum) in steady state and therefore predictable; by contrast, chaotic systems are

characterized by continuous power spectra [13, 14].
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Turning back now to Hamiltonian systems, we can see that no chaos occurs

in one-dimensional autonomous Hamiltonian systems, because the existence of a con-

served quantity, the energy E(x, p), allows for the solution [23]

t =
∫ x

x(0)

dx′ [∂pH(x′, p)]−1 , (1.7)

where p is regarded as a function of x and E . This solution must then be inverted

to obtain x(t) (and hence p(t)). So, the phase-space trajectories are regular for all

one-dimensional autonomous Hamiltonians, as is the case for the pendulum example

in Fig. 1.2 (indeed, any continuous dynamical system of the form of Eqs. (1.2) with

n = 2 is free of chaotic behavior [14]). As a result, Hamiltonian systems of one degree

of freedom are said to be integrable.

The important point of integrability in one dimension is the existence of a con-

stant of the motion. In the case of N degrees of freedom, the system is integrable

if there exist N independent constants of the motion Ik that are in involution, which

means that their Poisson brackets (taken pairwise) vanish:

{Ij, Ik}P :=
N∑
i=1

[(∂xiIj)(∂piIk)− (∂piIj)(∂xiIk)] = 0 (∀ j, k ∈ {1, . . . , N}) . (1.8)

These constants of the motion are related by Noether’s theorem [3] to symmetries of

the system (in the one-dimensional case, the constance of the energy is a consequence

of the time-invariance of the Hamiltonian). The existence of these constants insures

that the motion of trajectories in the 2N -dimensional phase space is restricted to N -

dimensional surfaces; under slightly more restrictive assumptions, these surfaces are

N -tori, and there exists a canonical transformation to action-angle coordinates, in which

the dynamics are similar to that of a free particle (and hence not chaotic) [25]. Separable

systems, where the Hamiltonian has the form

H(x1, . . . , xN , p1, . . . , pN) = H1(x1, p1) + · · ·+HN(xN , pN) , (1.9)

form a special class of higher-dimensional, integrable systems. These systems are clearly

integrable, because they are composed of uncoupled one-dimensional systems.
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Generic Hamiltonian systems do not possess the high degree of symmetry re-

quired for integrability. In the case of the 112 -degree-of-freedom systems studied in this

work, the external periodic drive breaks the time-invariance of the Hamiltonian and thus

opens up the possibility for chaotic behavior. When discussing the formation of chaos in

Hamiltonian systems, it is common to start with an integrable system (such as the pen-

dulum in Fig. 1.2) and view the symmetry-breaking interaction as a perturbation. When

a weak perturbation is added, as in Fig. 1.3, nonlinear resonances between the degrees

of freedom can occur. By the Poincaré-Birkhoff fixed-point theorem [5], these reso-

nances produce pendulum-like structures in the phase space (for weak perturbations).

In Fig. 1.3, several nonlinear resonances are apparent, including the original structure

of the unperturbed pendulum around the stable fixed point as well as two other pairs

of resonances (although arbitrarily many more are present on smaller scales). Note that

the corresponding structure in the unperturbed pendulum is not in itself a nonlinear

resonance, though, because it is not the direct result of coupling between two degrees

of freedom. Although a single (isolated) resonance does not result in chaotic behav-

ior [26], the presence of multiple resonances causes their separatrices to broaden into

chaotic regions [27] (or homoclinic “tangles” [5, 28]), as is shown by the diffuse area

around the central resonance in Fig. 1.3. Picturesquely, these resonances are referred to

as “islands of stability in a sea of chaos.”

As expected from KAM theory, the weak perturbation in Fig. 1.3 leaves most of

the stable structure intact. The invariant surfaces that survive the perturbation are thus

referred to as “KAM surfaces.” For the much stronger perturbation in Fig. 1.4, most of

the stable structure has degenerated into chaos. The chaotic region in this system is

bounded in momentum, though, because for sufficiently large momentum the kinetic

energy dominates the perturbing interaction, restoring stability. The chaotic motion due

to the interaction of the resonances can be thought of as competition between different

stable motions, where the trajectory is not dominated by any one of the motions (as is

the case for trajectories in an island of stability).
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1.2 Quantum Chaos

The field of quantum chaos, which brings together the study of classical chaotic dy-

namics and quantum-mechanical systems, is a relatively new area of study, especially

considering how long the fundamental ideas of its two parent fields have been around.

Interestingly, the first notions of quantum chaos seem to have predated quantum me-

chanics itself: the problem of “Chladni figures,” the patterns of dust formed on thin,

rigid, vibrating plates, was understood in the 19th century for plates with simple shapes,

but not for plates with irregular borders [29]. (Actually, this problem belongs to a more

general class of “wave chaos” problems, but as in microwave cavities and surface waves

in fluids, these systems are equivalent to quantum “billiard” systems in the sense of

time-independent quantum mechanics [29].) Einstein [30] realized as early as 1917

that there could be problems quantizing classical systems in the “old” quantum theory,

where the classical tori with actions given by a multiple of Planck’s constant � were asso-

ciated with quantum states (according to the Bohr-Sommerfeld and later the Einstein-

Brillouin-Keller quantization rules) [5, 31, 32]. This quantization procedure, while em-

phasizing the connection with the underlying classical description, obviously fails for

chaotic systems where action-angle variables do not exist. The advent of the “new”

(Schrödinger/Heisenberg) quantum mechanics effectively sidestepped these problems

by creating a very different formalism, and it was not until much later that these ideas

were once again appreciated [5]. Indeed, most of the progress in the field of quantum

chaos has been made only during the last quarter century.

As in classical Hamiltonian systems, there is a sense of integrability in quantum

systems. Symmetries also lead to conserved quantities in quantum mechanics in the

form of quantum numbers, which are the eigenvalues of operators that “generate” the

transformation under which the system is invariant. For an N -dimensional quantum

problem, if there are N operators Îk associated with conserved quantities that pairwise

commute,

[Îj, Îk] := Îj Îk − ÎkÎj = 0 (∀ j, k ∈ {1, . . . , N}) , (1.10)
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theN (“simultaneous”) operator eigenvalues completely specify the state of the system

as well as its time evolution [3, 33]. This requirement on the quantum operators is

formally analogous to the classical definition of integrability, since the existence of N

constants in involution as in Eq. (1.8) implies the existence of N vector fields,

LIk =
N∑
i=1

(∂piH)∂qi − (∂qiH)∂pi (1.11)

(such that the flow of the trajectories along the LIk leaves Ik unchanged), that pairwise

commute [23, 33]:

[LIj , LIk ] = 0 (∀ j, k ∈ {1, . . . , N}) . (1.12)

Alternatively, the pairwise vanishing of the classical constants in the Poisson bracket

carries over more directly to the quantum case in the form of the Moyal bracket [3, 33],

defined in Section 1.3.2 below. In any case, quantum “nonintegrability” occurs when

symmetries are broken, leading to the loss of “good” (conserved) quantum numbers.

Because classical nonintegrability leads to chaotic behavior, one might expect

something similar to happen for quantum nonintegrable systems. Surprisingly, though,

classical chaos is suppressed in quantum systems. This was discovered numerically in a

seminal study by Casati, Chirikov, Izrailev, and Ford (CCIF) [34] of the quantum version

of the standard map (1.1), obtained by quantizing the kicked-rotor Hamiltonian,

H =
p2

2
+K cos x

∑
n

δ(t− n) , (1.13)

which generates the classical standard map. (We will treat this problem in detail in

Chapter 4.) CCIF studied the kicked rotor in the regime where the phase space is char-

acterized by widespread chaos. The classical signature of chaos here is diffusion of an

ensemble of trajectories in momentum as they gain energy, on average, from the time-

dependent potential. Quantum mechanically, though, CCIF found that the kicked rotor

gains energy as in the classical case only for a short time, after which the diffusion is sup-

pressed. This effect has come to be known as dynamical localization, and is a dramatic

example of how quantum effects suppress classical chaos. Shepelyansky [35] has also
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provided a striking numerical demonstration of the suppression of chaos in the quantum

kicked rotor, as we illustrate in Fig. 1.5. In this simulation, the classical and quantum

systems evolve for some time from the same initial condition, and the suppression of en-

ergy growth by dynamical localization is evident in the quantum case. After evolving for

some duration, a time-reversal is performed. In principle, both models should reverse

their behavior and return to their initial conditions. The classical system only success-

fully contracts for a short time, though, and due to the buildup of numerical roundoff

errors, the trajectories “forget” their history and the ensemble resumes diffusion, as ex-

pected for chaotic dynamics. The quantum system, on the other hand, makes a clean

return to the initial state, indicating a robustness against perturbations and thus an ab-

sence of chaos. Note that such stability is expected in bounded quantum-mechanical

systems, since they must have discrete spectra and thus exhibit almost-periodic dynam-

ics [36].

1.2.1 Quantum Chaology

The apparent irony, then, of the field of quantum chaos is that it is the study of that

which does not exist. Nonetheless, there are still some manifestations of the underlying

classical disorder. One of the best-known examples is the disorder of the energy-levels

in quantum nonintegrable systems, where the energy-level statistics are equivalent to

those of random-matrix eigenvalues [3, 5, 37, 38]. Although the disorder in the spectra

reflects the underlying (classical) dynamical disorder, this disorder is not unpredictable

in the sense of dynamical chaos, because the spectral features can be computed with

high accuracy [39]. The quantum-localization effect that we already discussed is an-

other manifestation of the classical chaos. It has been shown [40, 41] that the kicked

rotor can be mapped onto the Anderson localization problem [42], where a particle is

spatially localized by the influence of a disordered potential. Thus in dynamical local-

ization, the disorder that causes energy localization is not truly random (in the sense

of an externally imposed randomness), but is generated dynamically by the underlying
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Figure 1.5: Comparison of classical (heavy solid line) and quantum (thin solid line)

momentum transport in the kicked rotor for K = 10 and scaled Planck constant k̄ = 1
(simulation). The quantum initial condition is a Gaussian (minimum-uncertainty) wave

packet with σp = 2.5, and the kinetic energy 〈p2/2〉 is plotted as a function of time; the
classical evolution is the corresponding average for an ensemble of initial points picked

according to the quantum distribution. The classical transport is diffusive, as charac-

terized by the linear growth of energy. The quantum transport only shows diffusion

for short times, and displays localization for longer times. At 100 kicks (marked by the
dashed line), the direction of time is reversed. The classical ensemble resumes diffusive

behavior after numerical errors build up in the simulation (thus converting the “special”

trajectories that evolve back to the initial condition into generic, diffusing trajectories),

which is typical for chaotic dynamics. The quantum system, on the other hand, retraces

its steps back to its initial condition with high fidelity, indicating a lack of chaos. Note

that in this quantum calculation, x is treated as an extended coordinate (as is the case in

the experiment), necessitating a large (2 × 106 points) numerical grid to avoid aliasing
effects.
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classical chaos. The chaos-assisted tunneling effect that we discuss in Chapter 6 also

reflects the disorder associated with the classical chaos. Since the tunneling rate is

strongly influenced by the states inside the chaotic sea, and these states are very sensi-

tive to changes in the system parameters, the tunneling rate shows strong fluctuations

as a parameter varies. Similar fluctuations are also apparent, for example, in the conduc-

tion of mesoscopic semiconductor structures [29, 43], but it is worth reiterating that

these symptoms of disorder are not chaotic in the classical sense.

In light of this suppression of chaos in quantum systems, Berry has introduced

the term quantum chaology [44, 45] to refer to the study of the “fingerprints” or “sig-

natures” of classical chaos in their quantized counterparts (of which the above phenom-

ena are examples, as well as the “scarring” of eigenstates along unstable periodic orbits

[46]). This is precisely the approach to quantum chaos adopted in this work, as we em-

bark on a detailed investigation of localization, tunneling, and other quantum transport

phenomena in classically chaotic systems.

1.2.2 Chaos in Quantum Mechanics

It is worth noting that one can also approach the problem of quantum chaos by asking

what kinds of chaotic behaviors can be found in quantum systems. Part of the difficulty

in carrying over classical chaos to quantum mechanics is that classical chaos is often

defined in terms of the divergence of nearby trajectories, which do not have a straight-

forward quantum analog. If two nearly identical wave packets evolve, even in a noninte-

grable system, the wave packets will remain close in the sense that their overlap integral

is preserved under unitary time evolution; however, this is not a proper argument against

chaos in quantum mechanics, as this argument applies also to the overlap integral of two

classical phase space distributions evolving by the Liouville equation [16]. A variation

on this idea is to look at sensitivity to parameter perturbations, rather than perturbations

to the quantum state, to uncover some quantum sensitive dependence. Because of the

sensitivity to parameter perturbations of quantum states associated with chaotic regions
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in phase space, the overlap of two initially identical wave packets evolving under slightly

different Hamiltonians will drop exponentially under chaotic conditions, but will remain

large in the stable case [47–50]. This idea has also been extended to studying the sen-

sitivity of wave-packet evolution under randomly perturbed Hamiltonians, which shows

a marked difference between stable and chaotic conditions [51, 52].

It is also possible to focus on the short-time quantum dynamics, where the be-

havior resembles that of classical chaos, as is apparent in the initial diffusive phase of the

quantum kicked rotor [53] shown in Fig. 1.5. Furthermore, initially localized wave pack-

ets can also show exponential instability for short times [54–56], as expected for a sim-

ilar classical distribution. Hence Chirikov [57] has advanced the notion of finite-time

quantum chaos. There are also examples of genuine chaos where quantum mechanics is

involved. Quantum systems can give rise to chaotic behavior when coupled to a classical

system, as is the case for example with two-level atoms in a cavity coupled to a classical

field [58–60] or in a quantum-mechanical oscillator coupled to a classical oscillator [61].

It has even been argued that chaos is possible in a purely quantum-mechanical system

obtained by quantizing a classical chaotic system, although not by the usual quantiza-

tion procedure, and this “configurational chaos” requires that the canonical momenta be

unbounded [62–64]. (Another proposal for a purely quantum chaotic system [65] seems

suspect in that the apparatus itself must become exponentially more complicated as the

evolution continues, and additionally shows sensitivity to perturbations of the system

parameters rather than to perturbations of the quantum state [66].)

Finally, we note that the concept of the trajectory is central to the de Broglie–

Bohm formulation of quantum mechanics, so it is natural to look for chaotic behavior

of these trajectories [67]. Interestingly, though, it has been found that the de Broglie–

Bohm trajectories can be chaotic even for an integrable billiard [68], so in a sense there is

“too much” chaos in the de Broglie–Bohm picture, in contrast to the “not enough” chaos

in standard quantum mechanics. It is not clear, however, that these chaotic trajectories

have any meaningful predictive power outside the statistical ensemble that reproduces
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the results of standard quantum mechanics.

1.2.3 Experiments in Quantum Chaos

By far the majority of progress in the field of quantum chaos has been theoretical, but

now there has developed a large body of experiments to complement the theoretical

advances. In this section we give a very brief and far from complete overview of experi-

mental work in quantum chaos to illustrate the variety of systems in which the ideas of

quantum chaos are important. An important first step towards experimental study in this

area was taken with the work of Bayfield and Koch on the multiphoton ionization of hy-

drogen Rydberg atoms [69]. A discrepancy between the measured ionization thresholds

and the predictions of classical models provided the first experimental evidence of dy-

namical localization [70–72]. Subsequently, Rydberg atom ionization experiments have

given rise to a variety of interesting phenomena [73], including scarring effects [72, 74]

and effects due to “metamorphoses” of classical resonances as the field strength is var-

ied [75]. The spectroscopy of atoms in external fields also provides a frequency-domain

arena for tests of quantum chaos, including level statistics [39, 76] and the influence

of periodic orbits [77–79]. The statistics of resonances in atoms, molecules, and nuclei

have also been shown to exhibit level-repulsion effects [33, 48].

As mentioned before, mesoscopic semiconductor structures provide an impor-

tant arena for the study of quantum chaos [29]. Conductance measurements of semi-

conductor billiard structures show “universal conductance fluctuations” and weak local-

ization effects with the application of strong magnetic fields [29, 43]. The tunneling

current through quantum-well heterostructures (“resonant tunneling diodes”) can also

be understood in terms of unstable periodic orbits in a chaotic regime [80] and show

effects due to scarring [81]. Semiconductor antidot lattices provide a different setting

for studying conductance fluctuations with applied magnetic fields [82, 83], giving an

experimental realization of the Lorentz gas [29]. Another related billiard-like system is

the “quantum corral” [84], where a scanning tunneling microscope (STM) can be used
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to move individual atoms on a surface to build a confining structure for electrons.

A different class of experiments explores the area of “wave chaos,” exploiting

the formal equivalence of various other wave equations to the Schrödinger equation

under certain circumstances. Perhaps the most notable among these are the microwave-

cavity billiard experiments [29], in which such topics as level statistics [85], scarring

[86], dynamical localization [87], chaos-assisted tunneling [88], and a trace formula [89]

have been studied. This line of analysis has been extended to the study of deformed

micro-disk cavity lasers, which act as open billiard systems in the optical domain [90].

A similar realization of wave chaos occurs with the mechanical vibrations of aluminum

blocks [91, 92] or rigid plates [29, 93], and billiard-type experiments can be carried out

using surface waves [94–96] or ultrasonic waves [97] in fluids. Many of these billiard-

type experiments are reviewed in [29]. Finally, the equivalence of the electromagnetic

equation in the paraxial approximation with the Schrödinger equation can be exploited

to create an optical realization of the kicked rotor [98, 99].

Of course, the field of atom optics provides a clean and precise setting for exper-

imental explorations of quantum chaos, including the dynamical localization effect that

we have introduced, but we defer this discussion until Section 1.4.

1.2.4 On the “Usefulness” of Quantum Chaos

The field of quantum chaos is generally associated with fundamental interests in quan-

tum mechanics, because of the initial motivation in this field to understand the interplay

and correspondence of quantum and classical mechanics. However, it is worth pointing

out that quantum chaos is also emerging as a field with important technological applica-

tions, and hence progress in this field is desirable also from an applied standpoint. One

obvious area where these ideas will be important is in the semiconductor and micro-

processor industries, where the nearly exponential increase in density of components

will soon lead to sufficiently small devices that quantum effects will be significant.

Present devices are strongly coupled to the environment at normal operating temper-
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atures, so that the electron coherence length is very short and thus quantum effects are

only important at very low temperatures, as in the conductance fluctuation experiments

mentioned above. But when quantum effects take over, the semiconductor devices will

obviously not have the high degree of symmetry necessary for integrability, so the charge

transport in these devices will fall in the regime of quantum chaos. Along these same

lines, the future development and demonstration of quantum computers [100] will re-

quire careful consideration of effects due to classical chaos to ensure proper operation

[101].

As we have already discussed, quantum chaos has been important in the under-

standing of atomic spectra. Quantum chaos has also been shown to be of importance

in the dynamical manipulation of atoms by light [102]. However, there are many more

applications of quantum chaos outside of quantum mechanics in other wave systems.

For example, quantum-chaos effects are important in the understanding of underwater

acoustics [103]. We have also already mentioned the applicability of quantum chaos to

the understanding of the mode structure of microwave cavity devices and mechanical vi-

brations. In a similar optical analogy, weakly deformed micro-disk semiconductor lasers

show large improvements in directionality and intensity over normal whispering-gallery

mode lasers, which is an application of wave chaos in an open system [90]. Finally, a

fiber-optical switch for the communication industry has been proposed [104], based on

the ideas of chaos-assisted tunneling, which we study in Chapter 6. In fact, a company

(OpTun Ltd.) has been founded to develop these ideas.

1.3 Decoherence

The lack of long-time chaotic behavior in quantum mechanics seems to bring up difficul-

ties in how the theories of quantum and classical physics are related. Specifically, since

quantum mechanics is believed to be the more universal theory, it should in some sense

“contain” classical mechanics as a limiting case. This idea, first advanced by Bohr, is

known as the Correspondence Principle, and showing how classical-quantum correspon-
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dence arises remains even now a controversial and challenging problem. But because

quantum mechanics does not support chaotic behavior in the sense of classical mechan-

ics, it seems, oddly, that chaos cannot exist even in classical mechanics, if we are to

believe in correspondence. In a simplistic view one might expect to recover classical

mechanics by formally taking the limit � → 0 (of course, since Planck’s constant � is

indeed a constant, what we really mean is that we are taking the limit where the action

of a system becomes arbitrarily large compared to �). However, this limit is highly sin-

gular and not necessarily well-defined, as one can see from the form of the WKB wave

function ψ ∼ exp(iS(x)/�) (where S is the action of the system) that applies in the

“semiclassical” regime of small �, which has an essential singularity at � = 0.

One path to correspondence is suggested, for example, by the initially diffusive

behavior in the kicked rotor that we noted above, which mimics the diffusion character-

istic of classical chaos. It has been argued [39, 53, 105] that the “quantum break time”

tB, when the behavior crosses over from diffusive to localized, scales as 1/�2, since in

an energy-time uncertainty sense, this is the time required for the discrete spectrum

to become “resolvable” by the system. Hence, it would seem that for macroscopic sys-

tems, the break time could become unobservably long because � would effectively be

very small. However, there is a second time scale for quantum deviations from classical

behavior, known as the “Ehrenfest time” tE, which scales much more slowly, as log(1/�).

The existence of this time was pointed out originally by [106] for a specific model, and

this time scale was discussed by [105, 107] in the context of the kicked rotor, by [108]

for another driven, one-dimensional system, and by [109] for general chaotic systems.

We will discuss the origin of this time scale in more detail below. The slow scaling of this

time has dire consequences for correspondence, for although this time scale diverges as

� → 0, in physical reality � is always some nonzero value, and thus spanning 30 orders

of magnitude in � from a manifestly quantum regime to a manifestly classical regime

yields a relatively minor change in tE. By this argument, then, we would predict ab-

surdly short times for which quantum effects should set in for classically chaotic systems
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[110, 111]. Since this obviously violates common experience in the macroscopic world,

there is clearly a need to resolve this discrepancy between the quantum and classical

pictures.

One solution to this problem is embodied in the theory of decoherence. The

key idea here is that macroscopic objects are in general not very well isolated from their

“environment,” which could, for example, include the internal (thermal) degrees of free-

dom or the ambient photons scattering off the object. Decoherence provides a mech-

anism by which the quantum coherence effects that suppress chaos can themselves be

suppressed. Thus, even though it seems clear that classical behavior does not, in gen-

eral, arise as a limit of the Schrödinger-equation description, it can arise as a limit of

an “open” quantum description that takes into account the external influences on the

system [112].

Broadly speaking, there are two “roles” of decoherence in explaining classical

behavior as a consequence of quantum mechanics. The first is the suppression of quan-

tum superposition states at the classical level, which addresses the famous Schrödinger

cat paradox and is intimately related to the quantum-measurement problem [113, 114].

The second role of decoherence is in ensuring classical behavior in the dynamical evo-

lution of a system. These two roles are, of course, closely related, but we will discuss

them separately according to how they are applied in explaining classicality.

1.3.1 Suppression of Quantum Superposition

In Schrödinger dynamics, the state of the system is described by the wave function or

state vector. For open systems, though, a more natural representation of the system is

in terms of the density operator. For a state |ψ〉, the density operator is defined as

ρ̂ := |ψ〉〈ψ| . (1.14)

In this case the density matrix (the representation of the density operator in a partic-

ular basis) is highly redundant, because if the state vector has n components in some
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finite basis, the density matrix has n2 components, but does not contain additional in-

formation. However, the density matrix has the advantage that it can be generalized to

an ensemble in a straightforward way simply by averaging over the members |ψj〉 of the

(usually large) ensemble,

ρ̂ :=
1
N

∑
j

|ψj〉〈ψj| . (1.15)

A state corresponding to a wave vector as in (1.14) is referred to as a pure state, whereas

an ensemble average as in (1.15) is a mixed state. The diagonal elements ραα = 〈α|ρ̂|α〉

of the density matrix are the populations, as they represent the probability of occupying

the state |α〉. The off-diagonal elements ραβ = 〈α|ρ̂|β〉 (α �= β) contain the relative-

phase information of the state, and are referred to as coherences. The important feature

of the coherences to note here is that they have their maximum magnitude for a pure

state. In a mixed state, if the phases of the various components are not aligned, the

magnitudes of the coherences are reduced, falling to zero for a completely uncorrelated

ensemble. Notice that because the coherences represent the potential for interference

effects, they are in effect the “nonclassical” part of the density matrix. It is only the

populations that have a sensible interpretation as classical probabilities.

The treatment of a system interacting with its environment begins typically by

identifying the degrees of freedom associated with the “system” of interest and the

“reservoir” which represents the environment. The combined system is then repre-

sented by the density operator ρ̂S+R, and we assume that this combined system is now

“closed” in the sense that there are no interactions with other systems that are not al-

ready described by this density operator. In a closed system, the density operator evolves

according to the Schrödinger-von Neumann equation

∂tρ̂ = − i
�
[H, ρ̂ ] , (1.16)

which gives the same evolution as the Schrödinger equation for the state vector. Hence

a pure state, treated as a closed system, will evolve into a pure state as a consequence

of the “unitarity” of the evolution equation. However, since we are generally interested
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in the system, which may have only a few degrees of freedom, we would like to ignore

the information associated with the reservoir, which typically has many more degrees of

freedom than we could possible monitor. One approach along these lines is suggested

by the form for expectation values of operators in terms of the trace over the density

matrix:

〈Â〉 = Tr[Âρ̂ ] . (1.17)

The average over the reservoir is then given by a partial trace taken over the reservoir

degrees of freedom, resulting in a “reduced” density operator that describes only the

state of the system:

ρ̂S = TrR[ρ̂S+R] . (1.18)

In general, the evolution of ρ̂S depends on its history, but in the case where the reservoir

is large, it should decorrelate rapidly, and so a Markovian approximation is justified. In

this case it is possible to derive a master equation for the evolution of ρ̂S [115], which

is similar to the unitary evolution equation (1.16) but with extra nonunitary terms de-

scribing the exchange of energy with the environment (dissipation or relaxation) and

the redistribution of populations due to fluctuations in the environment (diffusion)

[109, 116]. In terms of the density matrix, these new terms cause the evolution of a

pure quantum state into a mixed quantum state, since the diffusion terms cause the co-

herences to be damped away [115, 116]. Although the interferences that were initially

in the system still exist, they are moved out of the system and into the reservoir as the

system and reservoir become entangled through their interaction [112].

The idea of decoherence, in its simplest form, is that the interaction with the

environment can suppress the quantum coherences on a time scale that is many orders

of magnitude shorter than the time scale associated with relaxation [116]. So, while

the environment has a negligible impact on the “classical aspects” of the system, the

coherences can be suppressed effectively instantaneously in a macroscopic system. The

resulting diagonal density matrix can then be interpreted as a classical probability dis-

tribution.



27

The question that now arises is why the density operator should become diag-

onal in a particular basis and not some other. The answer depends, of course, on the

nature of the environmental interaction. It has been argued [117–119] that the envi-

ronment naturally selects a preferred (“pointer”) basis, which consists of those states

that are minimally affected by the environment (i.e., they become minimally entan-

gled with the environment). These states are, in a sense, “robust” to the decoherence.

This principle of “environment-induced superselection” [119] highlights the relation

of decoherence to the measurement of a quantum system. Such a measurement nec-

essarily entails an interaction with the environment, namely the measuring apparatus

[120]. The nature of the interaction is tailored to the measurement of some observ-

able, and the minimally coupled states are determined by a combination of the system

Hamiltonian and the interaction Hamiltonian for the environmental coupling. A mea-

surement may require a strong interaction that dominates the system Hamiltonian, so

that the pointer states are the eigenvalues of the interaction Hamiltonian, leading nat-

urally to the idea that measurement “collapses” the system into an eigenstate of the

operator corresponding to the measured observable. The naturally selected states have

also been demonstrated, for example, to be localized states in phase space in the case of

an environmental coupling (of intermediate strength) to the position of a particle [119],

coherent states for the weakly coupled harmonic oscillator [121], and energy eigenstates

in the regime of weak coupling to the environment, where the system Hamiltonian is

dominant [120]. Beyond the reduction to a classical mixture, decoherence addresses the

issue of how a quantum system is forced into a definite state by the measurement inter-

action (notice that the only diagonal, pure-state density operators correspond to the ba-

sis states). The “measurement” is made by the environment, in that the entanglement

with the environment transfers information to the environmental degrees of freedom.

The statistical mixture that we are left with in the master-equation description is a re-

flection of our ignorance of the state of the environment, which in a macroscopic system

is too complicated to keep track of even in principle. Since the outcome of the measure-
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ment is intimately tied to the immensely complicated environment, the measurement

appears as a “random” collapse of the state vector. Thus, decoherence attempts to bring

the measurement process back within the unitary evolution framework of quantum me-

chanics, without appealing to an extraneous notion of wave-function collapse, as in the

orthodox interpretation of quantum mechanics [112, 116].

1.3.2 Classical Chaotic Evolution

So far, we have seen that the interaction with the environment can take a state with

quantum features and convert it into a state that is sensible in a classical description.

More important for the correspondence principle in dynamical systems, however, is to

understand how decoherence can cause the evolution of a quantum system (which we

have seen is particularly problematic in nonintegrable systems) to cross over to classical

behavior.

One important tool for this discussion is the Wigner function (or distribution),

which facilitates the description of quantum dynamics in phase space. The Wigner

function is defined in terms of the density matrix as [122, 123]

W (x, p) :=
1
π�

∫ ∞
−∞
dx′e2ipx

′/~〈x− x′|ρ̂|x+ x′〉 . (1.19)

The Wigner function is not the only quantum phase-space distribution [124], but it has

several features that make it preferable to other distributions. Each marginal distribu-

tion of the Wigner function, where one of the variables is integrated out, results in the

probability distribution corresponding to the other variable. The Wigner function it-

self, however, is not a joint probability distribution, since it can take on negative values,

which represent the interferences or coherences of the quantum state. The evolution of

the Wigner function (for one degree of freedom) can be expressed in terms of the Moyal

bracket of the Hamiltonian and the Wigner function [3, 125, 126],

∂tW (x, p) = {H,W}M

:= −2
�
H(x, p) sin

[
�

2

(←−
∂p
−→
∂x −

←−
∂x
−→
∂p

)]
W (x, p) ,

(1.20)
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where the arrows on the derivative operators indicate the direction of operation. For a

particle Hamiltonian in “standard form,” H = p2/(2m) + V (x), the Moyal bracket can

be written as the Poisson bracket plus quantum “correction” terms,

∂tW = {H,W}P+
∞∑
n=1

(−1)n�2n
22n(2n+ 1)!

(∂2n+1
x V )(∂2n+1

p W ) . (1.21)

This equation is especially suitable for comparing the quantum evolution with the evo-

lution of a classical (“Liouville”) distribution ρL,

∂tρL(x, p) = {H, ρL}P , (1.22)

which is described only by the Poisson bracket. Notice that formally setting � = 0 in

(1.21) recovers the Liouville evolution (1.22), so that correspondence seems easy in this

formulation; however, it must be emphasized that taking the limit � → 0 for a quantum

system is not trivial and may not be well defined without the assistance of external

degrees of freedom.

It is immediately clear from the form of the Moyal bracket (1.21) that quantum-

classical correspondence is particularly simple for “linear” systems, such as a free particle

or a harmonic oscillator, because the quantum-correction terms vanish, yielding identi-

cal quantum and classical evolution equations. This point was recognized early on by

Schrödinger, when he constructed the coherent states of the harmonic oscillator that

mimic the classical oscillating trajectories [127]. Hence, all that is needed for corre-

spondence in these systems is the action of decoherence for a mere instant (say, a single

measurement), after which the quantum evolution preserves the classicality of the state.

In the more general and challenging case, the nonlinearities of the system dynamically

generate quantum interferences in the course of evolution [128]. The quantum terms

cause the evolution to be unitary (notice that the classical evolution, even for a closed

system, is manifestly nonunitary [129]), and thus it is these quantum terms that are

responsible for the suppression of classical chaos. (Note that this is a much more mean-

ingful way to treat the absence of chaos in quantum mechanics than simply appealing
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to the linearity of the Schrödinger equation.) The picture of quantum-classical diver-

gence according to [109] is that because of the exponential stretching of a Liouville

distribution under chaotic evolution, the distribution develops fine structure on a very

short time scale. Since the quantum-correction terms involve derivatives of the Wigner

function, they will be unimportant for an initially smooth distribution, but will quickly

become important as fine structure develops due to the classical part of the evolution.

From this argument, we expect the log(1/�) breakdown time that we mentioned earlier

as a consequence of exponential chaotic divergence. To achieve correspondence in the

nonlinear regime, a single measurement at a single time during the evolution is insuf-

ficient to cause agreement between classical and quantum. For example, in the case of

dynamical localization it is insufficient to decohere the system after the quantum break

time, because although such an action would temporarily restore diffusive behavior, it

would already be “too late,” as the subsequent evolution could never catch up to the

corresponding classical, continuously diffusing evolution. Rather, it is important to have

continuous decoherence, which would effectively broaden the spectral components of

the evolution and never allow the discreteness of the spectrum to become manifest. In

the picture of [109], the interaction with the environment results in additional diffu-

sive terms in the evolution equation (corresponding to the diffusion terms in the master

equation for the density-matrix evolution) that tend to smooth the Wigner function.

The resulting evolution is a balance between the usual evolution, which wants to gener-

ate fine structure, and the decoherence, which wants to destroy the same fine structure.

For sufficiently strong noise, the fine structure can be tempered to the point where the

quantum corrections remain unimportant, and the evolution is the same as that of the

classical system subject to the same diffusive interaction. In the semiclassical limit, only

a very small amount of noise is required to keep the quantum corrections under control

(diffusion is only necessary on the scale of an � cell in phase space), so that the effect

on the classical chaos is effectively negligible. This argument gives a nice picture of

how decoherence can induce classical evolution, but we should note that there are some
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subtleties that may still need to be addressed for certain systems, including the kicked

rotor [129].

In studying the decoherence due to environmental interaction, it is possible to

use an approach based on the master equation [130–132] that models all of the effects

due to the environment, or a simplified approach that employs an external noise source

[107, 133, 134]. The latter approach is justified because the noise-induced diffusion

(not dissipation) is mostly responsible for the decoherence [109, 135]. Furthermore,

there are several levels at which correspondence has been examined in various theoreti-

cal studies. The most qualitative is the removal of nonclassical features by decoherence,

including the destruction of scarred states [134] and the restoration of the irreversibility

that is so conspicuously absent in unitary quantum evolution [126]. At the next level is

the quantitative agreement of quantum and classical expectation values [131, 133, 136].

Although such quantitative agreement is important, the expectation values carry only

a small amount of information about the system, which motivates the study of corre-

spondence at the level of ensembles and distribution functions [110, 128]. Even here,

though, it is possible to have agreement at the ensemble level even in a quantum regime

[131], where it may still not be possible to associate classical trajectories with quan-

tum evolution. Hence the strongest form of correspondence is obtained in a quantum

trajectory approach, where a decoherence-influenced wave packet traces out a chaotic

trajectory with the same properties as a corresponding classical trajectory (with noise

added to the classical system to account for the “direct” contribution of the decoher-

ence) [130, 132, 137, 138].

It has been argued that an appeal to the influence of the environment is not

necessary for correspondence, but rather a coarse-graining, as for example manifested

in the Husimi distribution [124], can serve to remove the nonclassical structure of the

Wigner distribution [139]. However, as pointed out in [128], such an approach will not

in general be successful because this coarse graining hides the nonclassical features in

an essentially trivial way (because it can be reversed); it does not change the dynami-
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cal evolution of the quantum system, which as we have seen is certainly necessary for

correspondence; and the coarse graining forbids correspondence at the trajectory level,

which is in a sense the most impressive form of correspondence. The importance of en-

vironmental noise in explaining chaos is then somewhat ironic. Classical chaos is usually

understood as arising solely from the system itself and not from an external noisy source,

as we have pointed out in Section 1.1. At a deeper level, though, a certain amount of

noise is necessary to obtain chaotic behavior from quantum mechanics. But because this

noise level can be exceedingly small on macroscopic scales, the chaotic instability arises

operationally from the “classical” dynamics rather than the perturbative noise.

1.3.3 Experiments on Decoherence

Despite the vast body of theoretical work on decoherence, there have been relatively

few experiments dealing directly with the effects of decoherence on quantum systems.

The situation is beginning to change now, though, due to the necessity of combating

decoherence in systems where quantum coherence is very important, such as in quan-

tum computers [100]. In linear systems, there have been several impressive and clean

experiments. The most fundamental linear quantum problem, the two-slit experiment,

has been realized as an atom interferometer, where light scattered by the atoms serves as

a decohering measurement [140, 141]. Decoherence has also been studied in an entan-

gled Rydberg atom/microwave cavity system [142], where the cavity acts as a measuring

device for the internal atomic state. The decoherence of a superposition of motional

states has also been studied in an ion trap [143, 144].

The first experimental studies in decoherence actually began with noninte-

grable systems, where the effects of noise on the ionization of driven hydrogen [72, 145–

147] and rubidium [148–151] Rydberg atoms were studied. Especially relevant to the

work on correspondence that we discuss in Chapter 4 are Refs. [72, 145, 146], where

noise added to the microwave driving of the Rydberg atoms led to improved agree-

ment with classical predictions of ionization thresholds (which is an agreement at the
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expectation-value level, in contrast to the distribution correspondence that we present

in Chapter 4). There has also been some work investigating the effects of temperature

on conductance fluctuations in mesoscopic semiconductor quantum dots [152, 153].

Optical-analog experiments open up the possibility for decoherence experiments in

wave-chaos systems, where perturbations to diffraction-grating positions in an optical

kicked-rotor realization led to destruction of dynamical localization [98, 99]. Again,

atom optics has contributed several experiments to this area, the discussion of which we

defer until the next section.

1.4 Atom Optics

The field of atom optics is generally concerned with the manipulation of atoms using

electromagnetic fields or material objects. In a sense, this field is the dual of traditional

optics, where matter is used to manipulate electromagnetic (optical) fields. By far the

majority of work in this field involves the optical manipulation of atoms, which is the

case in this dissertation, although notable exceptions include the trapping of ions by

electric fields [154], the trapping of neutral atoms in static magnetic traps [155], the

reflection of atoms by the Casimir–van der Waals potential [156], and the diffraction

of atoms by lithographically fabricated gratings [157]. The important concept in the

optical manipulation of atoms is that light carries momentum. The momentum carried

by photons is ordinarily very small, and macroscopic objects are generally immune to

optical momentum effects. However, the momentum transferred to an atom when it

scatters photons can have a very significant effect on its motion. Although the deflec-

tion of atoms by light (“radiation pressure”) dates back to 1933 [158], it was not until

the advent of lasers that much progress was made in this field. Subsequently the cool-

ing of trapped ions using laser light was proposed [159, 160] and demonstrated soon

thereafter [161, 162]. The development of trapping and cooling of neutral atoms in-

troduced more difficulties, though, because the optical forces are so weak compared to

the electric-field forces used in ion traps, and so thermal atoms from an atomic beam
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were very difficult to trap. But the slowing of a thermal beam of atoms [163] and the

subsequent demonstration of laser cooling of neutral atoms in three dimensions (using

“optical molasses,” where laser light acts as an effective damping medium for the atoms)

[164] led to magnetic [155] and optical [165] traps for atoms.

It was, however, the addition of a magnetic field to optical molasses that revolu-

tionized atomic physics. This idea, due to Jean Dalibard [166], resulted in the efficient

cooling and trapping of atoms from an atomic beam [167] in a device now known as the

magneto-optic trap (MOT). The MOTuses optical molasses to cool atoms, while simul-

taneously taking advantage of the Zeeman shift of the atomic energy levels in a magnetic

field to introduce a spatial dependence on the radiation pressure and hence confine the

atoms to the center of the trap. The MOT was considerably simplified when it was

demonstrated that atoms could also be trapped directly from an ambient atomic vapor

[168], and it is now relatively simple to construct a very basic MOT [169]. The MOT is

now a true workhorse in atomic physics, as it provides a convenient, cold, localized, and

well-controlled sample of atoms that can be used as the starting point for a wide range of

experiments [170], including Bose-Einstein condensation [171–173], atom interferom-

etry [174], cold collisions and photoassociation spectroscopy [175], electric dipole mo-

ment searches [176], precision atomic clocks [177], and atom lithography [178, 179].

Indeed, all the experiments that we describe in this dissertation are performed with

a cesium MOT loaded from atomic vapor, much like the setup in [168], as discussed

further in Chapter 3. For some of the experiments that we will discuss, much more

elaborate preparation of the atoms is necessary after the initial trapping and cooling of

the atoms, as described in Chapter 5.

1.4.1 The Dipole Force and Optical Lattices

The forces used in a MOT are due to the absorption and spontaneous emission of light.

Because the direction of a spontaneously emitted photon is random, this force is in-

coherent and results in the diffusion of momentum on the scale of the atomic recoil
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momentum due to a single photon scattering event (the “photon-recoil momentum”).

Although this force is useful for the collection and preparation of atoms, the subsequent

manipulation of atoms is greatly facilitated by the use of the dipole force, which does not

involve dissipation or diffusion, and is thus a coherent interaction. The dipole force is a

result of the interaction of an optical field and the atomic dipole moment induced by the

field. The dipole interaction energy has the form −d · E, where d is the atomic dipole

moment and E is the electric field. Since the induced dipole moment is proportional to

the applied field, the optical potential is proportional to the field intensity, and thus the

dipole force is proportional to the gradient of the field intensity. In a photon picture, this

force arises as a consequence of stimulated scattering of photons by the atom, where the

redirection of a scattered photon results in a corresponding “recoil” by the atom. This

effect is also known as the ac Stark shift or light shift of the atomic energy, and was first

observed by Cohen-Tannoudji [180]. Thus, it is possible to create potentials to influ-

ence atomic motion by appropriately tailoring an optical-field profile. Also, if the optical

field is tuned sufficiently far from the nearest atomic resonance, the interaction will be

dominated by the dipole force, and spontaneous forces will be negligible.

One particular configuration in which the dipole force is important is the opti-

cal lattice, which is a periodic intensity pattern formed by the interference of multiple

beams. Although there are many different possible configurations of optical lattices

[181], the one that plays a central role in the experiments in this work is the simplest

possible lattice, a standing wave of light, which is a one-dimensional, linearly polar-

ized optical lattice. We discuss this configuration in detail in Chapter 2, but the basic

result is that the atomic motion in such a standing wave is that of a quantum pendu-

lum (without periodic boundary conditions). This system can then be viewed as an

ideal one-dimensional crystal with long coherence times [182–184], leading to interest-

ing and clean studies of effects in condensed-matter physics [185–189]. Viewed also

as a one-dimensional dynamical system, this system gives rise to interesting tunneling

effects [190–192], including non-exponential decay [193] and the quantum Zeno and
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anti-Zeno effects [194].

1.4.2 Atom Optics and Quantum Chaos

The fields of quantum chaos and atom optics became “entangled” with the proposal

by Graham, Schlautmann, and Zoller [195] to observe dynamical localization in the de-

flection of an atomic beam crossing through a phase-modulated optical lattice. It was

realized here in the group of Mark Raizen that the beam setup could be “collapsed” and

performed with cold atoms prepared by a MOT and exposed to a modulated optical lat-

tice in place. An apparatus using trapped sodium atoms was constructed [196, 197], and

the manifestations of dynamical localization [198] and islands of stability (and other fea-

tures in the transition from classical stability to chaos) in phase space [199] were studied

in the phase-modulated lattice. (It was also in these experiments that the “ballistic-

expansion imaging method” of measuring atomic momentum distributions was first em-

ployed. In this technique the atoms expand freely after the lattice interaction until

they have expanded far beyond the initial MOT size, then they are frozen in place by

optical molasses, and the distribution is photographed by a CCD camera.) In the phase-

modulated system, the theoretical understanding of dynamical localization came about

through an approximate mapping onto the kicked-rotor problem, and this system was

soon also directly realized [200]. In these experiments, the dynamical evolution leading

to localization was studied, along with the “quantum resonance” phenomenon, which is

expected to give rise to ballistic transport but was manifested as a late-time Gaussian

distribution. The atomic dynamics in an amplitude-modulated standing wave, which

is the same system that we use in Chapter 6 to study chaos-assisted tunneling, were

also studied using this apparatus to address the necessity of considering quantum chaos

in analyzing a system as simple as atoms crossing transversely through an unmodulated

optical lattice [102]. The work in this first-generation sodium apparatus is discussed in

more detail in [201], as well as in two dissertations [196, 197].

The next natural direction of the quantum-chaos experiments was to examine
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the effects of decoherence, now that the quantum suppression of chaos had been ob-

served. As these experiments involve transport to higher momenta than in the localized

case, the sodium-based experiment was not suitable to carry out these studies [196].

To address these problems with the “momentum boundary” [202], we constructed a

second-generation apparatus based on trapped cesium, which due to the longer wave-

length of the atomic resonance and larger atomic mass effectively yields a better fidelity

to the δ-kicked rotor over a wider momentum range (see Section 4.4.4 for details). The

quantum-chaos experiments carried out on this new apparatus are reviewed in this dis-

sertation as well as in Bruce Klappauf ’s dissertation [203], and meanwhile the sodium

apparatus was put to good use in the tunneling and solid-state experimental efforts de-

scribed in the previous section. The destruction of localization by amplitude noise in

the kicks as well as dissipation due to the presence of a weak optical molasses were ob-

served in this experiment [204], where it was found that late-time energy diffusion was

increased, and the momentum distributions made a transition from the localized expo-

nential profile to a classical-like Gaussian profile. Around the same time, the increased

energy growth due to spontaneous emission induced by the optical lattice itself was ob-

served by the group of Nelson Christensen [205], but it should be noted that there may

be some difficulties in interpreting the results of this latter experiment due to the in-

fluences of the classical momentum boundary and the stochastic dipole force [206]. We

subsequently extended this initial work on decoherence and showed that quantitative

quantum-classical correspondence at the level of expectation values and momentum

distributions could be achieved with a sufficient amount of amplitude noise, even in a

manifestly quantum regime [207, 208]. This work on decoherence and correspondence

in the kicked rotor is discussed in much more detail in Chapter 4.

There have also been several other interesting avenues of experiments on quan-

tum chaos and quantum transport in atom optics. We revisited the quantum resonance

phenomenon using the cesium apparatus, and due to much improved signal resolution

and noise levels over the original study of [200], we were able to resolve the ballistic
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component of the motion [209]. There have also been related studies by the group of

Keith Burnett [210, 211] on the kicked rotor near a quantum resonance but modified by

a constant acceleration. Ballistic transport was likewise observed in these experiments,

but the transport could be made directional (asymmetric) due to the influence of the

acceleration. Continuing in the vein of global quantum nonintegrable transport, the sup-

pression of diffusion by classical cantori was studied by the Christensen group [212], the

effects of quasiperiodic kicking were studied by a group at the Université des Sciences

et Technologies de Lille [213], and we provided experimental evidence for a universal

theory of quantum diffusion by Jianxin Zhong, Qian Niu, Roberto Diener, and others

[214]. More recently, work in this area has moved towards the study of mixed phase

space using localized initial conditions. In this context we have observed chaos-assisted

dynamical tunneling [215], and a collaboration of researchers at NIST-Gaithersburg un-

der the direction of William Phillips and Steven Rolston and researchers at the Univer-

sity of Queensland under the direction of Gerard Milburn, Halina Rubinsztein-Dunlop,

and Norman Heckenberg have also observed dynamical tunneling in a similar system

(using a Bose-Einstein condensate) but in a more manifestly quantum and strongly cou-

pled regime [216] (some earlier work of the Queensland group is discussed in [217]).

Our work on chaos-assisted tunneling is described in detail in Chapter 6. Finally, we

have performed experiments on a modified version of the kicked-rotor system that leads

to spatial localization of the atoms, with applications to atom lithography. The results of

this work will be presented in future publications [218, 219].



Chapter 2

Atomic Motion in an Optical Standing Wave

2.1 Overview

In this chapter we will motivate the experiments in this dissertation by considering the

basic setup common to all of the experiments: the motion of an atom in a standing

wave of far-detuned light. The basic conclusion of this chapter is that under the proper

conditions, it is possible to ignore the internal electronic structure of the atom, and

treat the atom as a point particle. Furthermore, the “reduced” atom moves under the

influence of the effective center-of-mass Hamiltonian

Heff =
p2

2m
+ V0 cos(2kLx) , (2.1)

where m is the atomic mass, kL is the wave number of the laser light, and the po-

tential amplitude V0 is proportional to the laser intensity and inversely proportional to

the detuning from the nearest atomic resonance (which in these experiments is one

of the components of the cesium D2 spectral line). This Hamiltonian is familiar, as it

is formally equivalent to the plane-pendulum Hamiltonian. This motion is, of course,

integrable, but this is nevertheless an important starting point for the realization of non-

integrable systems, as both the amplitude and phase of the potential can be modulated

to realize a variety of 112-degree-of-freedom systems.

We begin the analysis in Section 2.2, where we set up the problem of a two-

level atom interacting with a laser field. We then examine the dynamical equations of

motion for the atom and derive the atomic energy shift due to the field in Section 2.3.

The adiabatic approximation, which is necessary to decouple the internal and external

39
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dynamics (and thus ignore the internal degrees of freedom), is reviewed in Section 2.4.

In Section 2.5 we look at the deviations that can occur from the idealized picture rep-

resented by Eq. (2.1), such as several dissipative processes as well as the treatment of

cesium (which has quite a complicated hyperfine level structure) as a two-level atom.

We also estimate the magnitudes of these corrections for the experiments in this disser-

tation. Section 2.6 covers the more general case of when the two beams that form the

optical lattice differ in amplitude and frequency. We will see that the former difference

can be taken into account by using the geometric mean of the two intensities as a re-

placement for the intensity in the identical-beam case, and the frequency difference is

equivalent to a nonzero velocity of the lattice. Finally, in Section 2.7, we examine some

aspects of quantum motion in an optical lattice that will be important considerations

for the experiments described in later chapters. Specifically, we will examine the how

the momentum excitations due to the lattice are quantized in multiples of two pho-

ton recoil momenta (2�kL) and how this quantization gives rise to Bragg scattering; we

will also consider the band structure of the lattice, which is important in using a lattice

for quantum-state preparation; and we examine the consequence of the lattice being

an extended system, as opposed to a “true” pendulum that obeys periodic boundary

conditions over one period of the potential.

2.2 Atom-Field Interaction

We begin our treatment with a general description of the atom-field interaction. We

consider the one-dimensional problem of a two-level atom moving in a standing wave of

light. The standing wave is described by the sum of two traveling waves,

E(x, t) = ẑE0[cos(kLx− ωLt) + cos(kLx+ ωLt)]

= ẑE0 cos(kLx)
(
e−iωLt + eiωLt

)
=: E(+)(x, t) + E(−)(x, t) ,

(2.2)

where E(+) and E(−) are the positive- and negative-rotating components of the field,

respectively (i.e., E(±) ∼ e−i(±ωL)t), E0 is the amplitude of either one of the two con-
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stituent traveling waves, and ωL is the laser frequency.

The atomic free-evolution Hamiltonian is then given by

HA =
p2

2m
+ �ω0|e〉〈e| , (2.3)

where the excited and ground internal atomic states are |e〉 and |g〉, respectively, and

ω0 is the frequency of the atomic resonance. The atom-field interaction Hamiltonian is

given (in the dipole approximation) by

HAF = −d · E , (2.4)

where d is the atomic dipole operator. Assuming that |ωL − ω0| � ωL + ω0, we can

make the rotating-wave approximation (RWA), where terms rotating at twice the optical

frequencies are replaced by their zero average value, with the result

HAF = −d(+) ·E(−) − d(−) · E(+)

= −d(+)
z E(−) − d(−)z E(+) ,

(2.5)

where we have decomposed the dipole operator into its positive- and negative-frequency

parts,

d = d(+) + d(−)

= (a+ a†)〈e|d|g〉 ,
(2.6)

a := |g〉〈e| is the atomic lowering operator, and we have taken the dipole matrix element

〈e|d|g〉 to be real. We can also write the interaction Hamiltonian as

HAF =
�Ω
2
(aeiωLt + a†e−iωLt) cos kLx , (2.7)

where we have defined

Ω := −2〈e|dz|g〉E0

�
(2.8)

as the maximum Rabi frequency.

Before writing down the evolution equations, we make a transformation into the

rotating frame of the laser field by defining the slowly varying excited state

|ẽ〉 := eiωLt|e〉 (2.9)
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and the stationary field amplitudes

Ẽ(±) := e±iωLtE(±) . (2.10)

We can then rewrite the interaction Hamiltonian as

H̃AF = −d̃(+) · Ẽ(−) − d̃(−) · Ẽ(+)

=
�Ω
2
(ã+ ã†) cos kLx ,

(2.11)

where d̃(±) and ã are defined as d(±) and awere defined, but with |e〉 replaced by |ẽ〉. In

making the rotating-wave approximation, we have discarded the two terms that would

have an explicit time dependence of e±i2ωLt in Eq. (2.11), and in fact we have removed

all of the explicit time dependence from this problem. Notice also that |ẽ〉 is additionally

an eigenstate of the internal part ofHA, with eigenvalue �ω0 − �ωL. Hence, in terms of

the rotating frame excited state, the free atomic Hamiltonian becomes

H̃A =
p2

2m
− �∆L|ẽ〉〈ẽ| , (2.12)

where ∆L := ωL − ω0 is the detuning of the laser from the atomic resonance. Again,

this representation of the problem in the laser frame is interesting, because it shows

that this ac interaction is equivalent to the problem of two states separated in energy by

�∆L interacting with a dc electric field (after invoking the RWA).

2.2.1 Digression: Unitary Transformations and Field Operators

The result (2.12) also follows from formally applying the unitary transformation

U = exp (iωLt|e〉〈e|) , (2.13)

so that |ẽ〉 = U |e〉 (and |g̃〉 = U |g〉 = |g〉), and then using the transformation law for a

Hamiltonian under a time-dependent, unitary transformation [188]:

H̃ = UHU † + i�(∂tU)U † . (2.14)
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However, this transformation does not correctly reproduce the rotating-frame interac-

tion Hamiltonian (2.11). The problem lies in the fact that we have ignored the operator

nature of the electric field. We can write the (single-mode) laser field as [220]

E(+)(x, t) = ẑE aF cos(kLx) e−iωLt , (2.15)

where aF is the annihilation operator for the laser field,

aF =
∞∑
n=1

|n− 1〉〈n|
√
n , (2.16)

and E is a constant that can be written in terms of the mode volume of the field and

the photon energy [221]. In terms of the quantized field, the combined Hamiltonian

corresponding to (2.3) and (2.4) becomes

H = HA +HAF

=
p2

2m
+ �ω0|e〉〈e|+

�g

2

(
aa†Fe

iωLt + a†aFe−iωLt
)
cos kLx ,

(2.17)

where g := −2〈e|dz|g〉E/�. This Hamiltonian is in the interaction picture with respect

to the field evolution [222], because the field operators carry the explicit time depen-

dence of the field (written out explicitly here). Thus, in addition to the transformation

(2.13), we transform out of the interaction picture by applying the second transforma-

tion

UI = exp (iHFt/�) , (2.18)

where HF is the field Hamiltonian, given by

HF = �ωL

(
a†FaF +

1
2

)
. (2.19)

The resulting Hamiltonian is

H̃ =
p2

2m
+ �ω0|ẽ〉〈ẽ|+

�g

2

(
ãã†F + ã†ãF

)
cos kLx + �ωL

(
ã†FãF +

1
2

)

= H̃A + H̃AF + H̃F ,

(2.20)

where the tildes indicate operators after transformation. This Hamiltonian is then in

the Schrödinger picture with respect to the field, where the field time dependence is
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generated by the presence of HF. In the classical limit, the average photon number N

of the laser field is very large, and in a coherent state the fractional uncertainty in N

becomes vanishingly small. Hence, the field operators aF can be replaced by
√
N , and

the field Hamiltonian reduces to a constant energy offset (and thus can be neglected).

Upon making the identification Ω = g
√
N , we also recover the correct form for the

rotating interaction Hamiltonian (2.11). Hence we have shown that the transformations

(2.9) and (2.10) arise formally from different representations of the quantized field.

With the expression (2.15) for the field operator in hand, we make one final re-

mark about the RWA. Since E(+) annihilates a photon from the laser field, the terms

left in Eq. (2.5) correspond to raising the atomic state while lowering the field state

(d(−)z E(+)) and lowering the atomic state while raising the field state (d(+)
z E

(−)). In-

voking the RWA, then, amounts to keeping only the energy-conserving (resonant) terms

in the interaction Hamiltonian.

2.3 Schrödinger Equation

Since we assume that the detuning from resonance is large (i.e., ∆L � Γ, where

1/Γ is the natural lifetime of |e〉), we will neglect spontaneous emission and use the

Schrödinger equation,

(H̃A + H̃AF)|ψ〉 = i�∂t|ψ〉 , (2.21)

to describe the atomic evolution. It is convenient to decompose the state vector |ψ〉

into a product of internal and external states,

|ψ〉 = |ψe(t)〉 |ẽ〉+ |ψg(t)〉 |g〉 (2.22)

where the |ψi(t)〉 are states in the center-of-mass space of the atom. In the following,

we will associate all time dependence of the atomic state with the center-of-mass com-

ponents of the state vector. Defining the coefficients ψi(x, t) := 〈x|ψi(t)〉, the equation
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of motion for the wave function 〈x|ψ〉 becomes

i�(∂tψe|ẽ〉+ ∂tψg|g〉) =
p2

2m
(ψe|ẽ〉+ ψg|g〉)− �∆Lψe|ẽ〉+

�Ω
2
(ψe|g〉+ ψg|ẽ〉) cos kLx .

(2.23)

Separating the coefficients of |ẽ〉 and |g〉, we obtain the coupled pair of equations

i�∂tψe =
p2

2m
ψe +

(
�Ω
2
cos kLx

)
ψg − �∆Lψe

i�∂tψg =
p2

2m
ψg +

(
�Ω
2
cos kLx

)
ψe .

(2.24)

for the wave functions ψi(x, t).

At this point we mention that it is possible to find energy eigenstates of the

coupled atom-field system. From (2.24), we can find the new (internal) eigenstates by

diagonalizing the matrix 
 −�∆L

�Ω
2
cos kLx

�Ω
2
cos kLx 0


 , (2.25)

where we have ignored the center-of-mass contributions to the Hamiltonian. The eigen-

values are given by

E1,2 = −�∆L

2
± �

2

√
∆2
L + Ω2 cos2 kLx , (2.26)

with corresponding eigenvectors [115, 223]

|1〉 = sin θ|g〉+ cos θ|ẽ〉
|2〉 = cos θ|g〉 − sin θ|ẽ〉 .

(2.27)

By convention the state |1〉 has the higher energy, and the angle θ is defined via

tan2θ = −Ω cos kLx
∆L

(
0 ≤ θ < π

2

)
. (2.28)

These states are known as the dressed states of the atom, and we see from Eq. (2.26)

that the coupling to the field causes an avoided crossing in the energy level structure
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of the atom. For ∆L � Ω, we can expand the dressed-state energies (2.26), with the

result

E1,2 = −�∆L

2
± �∆L

2
± �Ω2

4∆L

cos2 kLx+ O
(
Ω4

∆3
L

)
. (2.29)

In this limit, the atom is essentially in only one of the dressed states, and so it is clear

that the atom experiences an energy shift that depends sinusoidally on position. This

shift in the energy levels is the ac Stark shift, and we will treat this phenomenon more

precisely and directly in the next section, in the limit of large ∆L.

2.4 Adiabatic Approximation

The equations of motion (2.24) can be greatly simplified by using the adiabatic ap-

proximation. We can motivate this approximation by examining the various time scales

in the evolution of ψe and ψg. The kinetic-energy terms in Eqs. (2.24) induce varia-

tions on a time scale corresponding to several recoil frequencies ωr := �k2L/2m, where

ωr = 2π · 2.07 kHz for cesium. However, the pump-field terms induce motion on a

time scale corresponding to the Rabi frequency (typically from zero to several hundred

MHz), and the free evolution term induces motion of ψe on a time scale corresponding

to ∆L (typically several to many GHz); together, these terms induce internal atomic

oscillations at the generalized Rabi frequency Ωgen(x) :=
√
Ω2 cos2 kLx+∆2

L � ∆L.

Furthermore, in between these long and short time scales of external and internal atomic

motion lies the damping time scale due to coupling with the vacuum, which corresponds

to the natural decay rate Γ (for cesium, Γ/2π = 5.2 MHz). Because we are primarily in-

terested in the slow center-of-mass atomic motion, and the internal atomic motion takes

place for times much shorter than the damping time, it is a good approximation to as-

sume that the internal motion is damped instantaneously to equilibrium (i.e., ∂tψe = 0,

because ψe is the variable that carries the natural internal free-evolution time depen-

dence at frequency∆L, whereas ψg has no natural internal oscillation, because the state
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|g〉 is at zero energy). This approximation then gives a relation between ψe and ψg:(
�∆L −

p2

2m

)
ψe =

(
�Ω
2
cos kLx

)
ψg . (2.30)

We can then use this constraint to eliminate ψe in the second of Eqs. (2.24), with the

result

i�∂tψg =
(
p2

2m

)
ψg +


 �Ω2

4
(
∆L −

p2

2m�

) cos2 kLx

ψg . (2.31)

We have already assumed that �∆L � p2/2m, so we can ignore the momentum contri-

bution to the cosine amplitude, and this equation becomes

i�∂tψg =
(
p2

2m

)
ψg + V0 cos(2kLx)ψg , (2.32)

where we have shifted the zero of the potential energy, and

V0 :=
�Ω2

8∆L

=
|〈e|dz|g〉|2E2

0

2�∆L

.

(2.33)

Since the detuning is large, nearly all the population is contained in |g〉, so the excited

state completely drops out of the problem. Hence, the atom obeys the Schrödinger

equation with the center-of-mass Hamiltonian

H =
p2

2m
+ V0 cos(2kLx) , (2.34)

and the atom behaves like a point particle in a sinusoidal potential, where the strength

of the potential is given by (2.33). From Eq. (2.31), we see that the atomic momentum

leads to a very small correction to the well depth V0.

2.4.1 Master Equation Approach

It is also instructive to make the adiabatic approximation from the viewpoint of a mas-

ter equation, where we can more explicitly see the effects of damping on the atomic



48

motion. The master equation for the atomic evolution (i.e., the optical Bloch equations

generalized to include center-of-mass motion) has the general form [224]

∂tρ̃(t) = − i
�
[H̃A + H̃AF, ρ̃(t)] + Vdissρ̃(t) (2.35)

in the rotating basis, where the density operator is given by ρ̃ := |ψ〉〈ψ|, with |ψ〉 as

in (2.22). In this equation, the commutator describes the Hamiltonian evolution of the

system, and the dissipation operator Vdiss describes spontaneous emission. We can write

out the effect of the dissipation operator more explicitly, with the result [225]

∂tρ̃(t) = − i
�
(H̃effρ̃(t)− ρ̃(t)H̃†eff)

+ Γ
∫
dΩfsc(θ, φ)eikLx sin θ cosφaρa†e−ikLx sin θ cosφ ,

(2.36)

where the effective, non-Hermitian Hamiltonian is given by

H̃eff = H̃A + H̃AF − i
�Γ
2
|ẽ〉〈ẽ| , (2.37)

fsc(θ, φ) is the angular distribution of the scattered light, and eikLx sin θ cosφ is the mo-

mentum-shift operator (projected along the x-axis) that describes the photon recoil of

the atom as it returns to the ground state. Note that in writing down (2.37), we have

assumed purely radiative damping. The non-Hermitian nature of this effective Hamil-

tonian accounts for the damping in the system, and causes the total population to decay;

the ground-state creation term (the last term in (2.36)) returns the lost population to

the ground state. We can then write out the equations for the density matrix elements

ρ̃ij(x, x′, t) := 〈x|〈i|ρ̃|j〉|x′〉 as

∂tρ̃gg = − i
�

[
p2

2m
, ρ̃gg

]
− iΩ
2
(coskLxρ̃eg − ρ̃ge cos kLx)

+ Γ
∫
dΩfsc(θ, φ)eikLx sin θ cosφρ̃eee−ikLx sin θ cosφ

∂tρ̃ee = − i
�

[
p2

2m
, ρ̃ee

]
+
iΩ
2
(cos kLxρ̃eg − ρ̃ge cos kLx)− Γρ̃ee

∂tρ̃ge = − i
�

[
p2

2m
, ρ̃ge

]
−
(
Γ
2
+ i∆L

)
ρ̃ge −

iΩ
2
(cos kLxρ̃ee − ρ̃gg cos kLx)

∂tρ̃eg = − i
�

[
p2

2m
, ρ̃eg

]
−
(
Γ
2
− i∆L

)
ρ̃eg −

iΩ
2
(cos kLxρ̃gg − ρ̃ee cos kLx) .

(2.38)
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We again assume that ∆L � Γ and note that the equations have fast internal driving

terms (with frequencies comparable to or greater than Γ) and slow center-of-mass terms;

this time, however, the equations of motion for the coherences (which are responsible

for the population oscillations) have explicit damping terms. Since we are interested in

the slow external motion, we can use the fact that the steady-state solution for ρ̃ee is

of order (Γ/∆L)2, whereas the steady state solutions for the coherences ρ̃eg and ρ̃ge are

of order Γ/∆L [222], so that we can neglect the ρ̃ee terms on the right-hand sides of

these equations. Now, we will assume that the quickly rotating coherences are damped

to equilibrium on a time scale short compared to the external motion of interest, and

hence set ∂tρ̃ge = ∂tρ̃eg = 0. Doing so leads to the adiabatic relations

ρ̃ge =
Ω
2∆L

ρ̃gg cos kLx

ρ̃eg =
Ω
2∆L

cos kLxρ̃gg ,
(2.39)

where we have neglected the momentum and Γ terms in comparison to the ∆L term.

Substituting Eqs. (2.39) into the equation of motion for ρ̃gg (and neglecting the ρ̃ee

term), we find

∂tρ̃gg = − i
�

[
p2

2m
+

�Ω
4∆L

cos2 kLx, ρ̃gg

]
. (2.40)

This equation is simply the equation of motion for ρ̃gg under the Hamiltonian

Hρ̃ =
p2

2m
+

�Ω2

4∆L

cos2 kLx , (2.41)

which is equivalent to the Hamiltonian (2.34) when the zero-point of the potential is

shifted. Notice that this adiabatic-elimination procedure is similar to the one commonly

used to study laser cooling and trapping, where the excited state is eliminated, but

spontaneous emission is not ignored; this procedure leads to a Fokker-Planck equation

of motion for the atomic distribution [226].

From this approach, it is clear that the adiabatic approximation is good after

a time on the order of 1/Γ, when the coherences have damped away. After this ini-

tial transient, the adiabatic approximation remains good as long as any modulations of
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the standing wave take place over a time long compared to 1/Ωgen. This is clear from

the dressed-state result (2.26), because such modulations will not excite transitions be-

tween the dressed states and thus cause the adiabatic approximation to break down.

This argument thus sets limits on experiments where the lattice is pulsed, as in the

atom-optical realization of the kicked rotor problem in Chapter 4.

2.5 Complications

Until this point we have argued that in the limit of large detuning ∆L (compared to

both the maximum Rabi frequency Ω and the atomic lifetime Γ), the motion of an atom

in a standing wave of light is equivalent to a point particle moving conservatively in a

sinusoidal potential. In this section we will discuss several ways in which the real atomic

system differs from this idealized description.

2.5.1 Spontaneous Emission

In the parameter regime that we have discussed above, it is possible to use the results

we have derived so far to estimate the rate of spontaneous emission due to the far-

detuned light. From the form of the master equation (2.38), we see that the total rate

of spontaneous emission is simply the product of the decay rate Γ and the excited-

state population ρ̃ee = |ψe|2 (integrated over position). From Eq. (2.30), we have, after

ignoring the momentum term,

|ψe|2 =
Ω2

4∆2
L

cos2 kLx|ψg|2 . (2.42)

Performing a spatial average and using |ψg|2 � 1, we find the scattering rate

Rsc =
ΓΩ2

8∆2
L

. (2.43)

A more careful treatment of the spontaneous emission rate yields (see Appendix A)

Rsc =
(Γ/2)Ω2 cos2 kLx

2(∆2
L + Γ2/4) + Ω2 cos2 kLx

. (2.44)
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The momentum recoils from the emitted photons results in atomic momentum diffu-

sion at the rate

Dse =
�
2k2LΓζ

2

4m
Ω2 cos2 kLx

2(∆2
L + Γ2/4) + Ω2 cos2 kLx

, (2.45)

where the kinetic energy diffusion coefficient D is defined such that 〈p2x/(2m)〉 grows

asymptotically as Dt. Also, ζ2 is the mean-square projection of the photon recoil along

the direction of the standing wave (for radiation from a pure linearly oscillating dipole,

ζ2 = 2/5; for light near the D2 line of cesium, where the ground-state sublevels in

either the Fg = 3 or the Fg = 4manifold are uniformly populated, and the detuning∆L

is large compared to the excited state hyperfine splittings, ζ2 ≈ 0.34).

2.5.2 Stochastic Dipole Force

The dipole force on the atoms in the standing wave can also lead to momentum dif-

fusion. The dipole moment of the atom fluctuates due to spontaneous emission, and

this fluctuating dipole interacts with the field gradients in the standing wave to produce

momentum diffusion at a rate [227, 228]

Dsdf =
�
2k2LΓ
2m

Ω2 sin2 kLx
[2(∆2

L + Γ2/4) + Ω2 cos2 kLx]3

×
[
2
(
∆2
L +

Γ2

4

)2

+
(
3
4
Γ2 −∆2

L

)
Ω2 cos2 kLx+

3
2
Ω4 cos4 kLx+

Ω6

Γ2
cos6 kLx

]
.

(2.46)

In writing down the diffusion rates (2.45) and (2.46), we have assumed nearly zero

atomic velocity and ignored the velocity dependences of the diffusion rates [228].

2.5.3 Nonlinearities of the Potential

In Section 2.3, we saw how the center-of-mass potential

V (x) =
�Ω2

8∆L

cos 2kLx (2.47)

arises from the energy shift of the dressed states (to lowest order in Ω2) and the as-

sumption that the atom is in only one dressed state. Here we describe the corrections
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to this potential due to the nonlinear dependence of the dressed-state energies on Ω2 as

well as the mixed steady-state populations of the dressed states. The potential obtained

from the optical Bloch equations is [220, 227, 228]

V (x) =
�∆L

2
log

(
1 +

Ω2

2(∆2
L + Γ2/4)

cos2 kLx
)
. (2.48)

Since we are primarily interested in the limit where ∆L is large compared to both Γ and

Ω, we can extract the first few Fourier components of (2.48),

V (x) = V02 cos(2kLx) + V04 cos(4kLx) + V06 cos(6kLx) + . . . , (2.49)

where, if we define the (maximum) saturation parameter s as

s :=
Ω2

2(∆2
L + Γ2/4)

, (2.50)

we find

V02 = (�∆L/2)[2 + 4
(
1−

√
1 + s

)
/s]

V04 = (�∆L/2)[− (8 + 8s+ s2) + 4(2 + 3s+ s2)/
√
1 + s ]/s2

V06 = (�∆L/2)[2(32 + 48s+ 18s2 + s3)

− 4(16 + 32s+ 19s2 + 3s3)/
√
1 + s ]/(3s3) .

(2.51)

For small s, these become

V02 =
�∆L

2

[
1
2
s − 1

4
s2 +

5
32
s3 − 7

64
s4 +O(s5)

]

V04 =
�∆L

2

[
− 1
16
s2 +

1
16
s3 − 7

128
s4 + O(s5)

]

V06 =
�∆L

2

[
1
96
s3 − 1

64
s4 + O(s5)

]
.

(2.52)

Hence, the corrected potential to order Ω4 is

V (x) =
(

�Ω2

8∆L

− �Ω4

32∆3
L

)
cos 2kLx−

�Ω4

128∆3
L

cos 4kLx+ O
(
Ω6

∆5

)
, (2.53)

where we have ignored the Γ dependence in s. The Stark shift is due to stimulated

Raman and Rayleigh transitions among the motional states of the atom induced by the

field; since these corrections are higher order in Ω2, we can associate them with higher-

order photon processes.
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2.5.4 Velocity Dependence

In addition to diffusive effects and the saturation of the light-induced potential, there

are velocity-dependent forces associated with motion in the standing wave. If we assume

small velocities (kLv � Γ), then diabatic transitions between the dressed states are

negligible, and the force to lowest order in vx is [220, 227–229]

Fv = vxx̂2�∆Lk
2
L sin

2 kLx
Γ2Ω2[2(∆2

L + Γ/4)−Ω2 cos2 kLx]−Ω6 cos4 kLx
Γ[2(∆2

L + Γ2/4) + Ω2 cos2 kLx]3
. (2.54)

For small Ω2, this force can be understood in terms of optical molasses, where Doppler

shifts cause an imbalance of spontaneous scattering between the two beams (leading to

a cooling force for red detunings) [229]. For larger Ω2, when the last term in (2.54) is

dominant, this force can be understood in terms of the local steady-state dressed-level

populations lagging behind the atomic position [220]; furthermore, in this regime, the

sign of the force is opposite to the weak-field case, so that a red detuning actually leads

to a heating force.

2.5.5 Multilevel Structure of Cesium

The results that we have derived in this chapter have assumed a two-level electronic

structure of the atom. The cesium D2 line, however, is far more complicated than a

two-level atom as a result of hyperfine structure (Appendix A). The ground state is

split into two hyperfine levels, F = 3 and F = 4 (where F is the hyperfine quantum

number), which are separated by 9.2 GHz. Each of these levels additionally has 2F +

1 magnetic sublevels (which are degenerate in the absence of fields), labeled by the

quantum number mF . The excited state is split into four sublevels, F = 2, 3, 4, and 5,

with splittings between adjacent levels around 200MHz, each with a corresponding set

of magnetic sublevels.

From this proliferation of states it is not at all obvious that the two-level model

is appropriate. The first important step in simplifying this structure is that the atoms
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should be initially optically pumped into one of the ground state levels (but not nec-

essarily into only one magnetic sublevel). Then the atoms are only coupled to three

of the excited states due to angular momentum conservation (i.e., F ′ = 2, 3, or 4 are

excited for atoms pumped into the F = 3 ground state manifold, and F = 4 atoms can

be excited to F ′ = 3, 4, or 5). In the limit where the detuning ∆L is large compared to

the excited-state hyperfine splittings, the excited states can be regarded as degenerate.

In this limit, and for a linearly polarized standing wave, a symmetry then applies, which

makes the dipole moment independent of mF , and it has the value 2.2 × 10−29 C · m

(see Appendix A for details).

The detuning is not arbitrarily large, however, with the consequence that the

effective lattice potential depth V0 depends slightly on mF [230]. This effect can be

accounted for by explicitly summing over the excited states to arrive at an effective

dipole moment for each sublevel:

d2eff(mF )
∆L

=
∑
F ′

|〈F mF |dz|F ′ mF 〉|2
∆F ′

. (2.55)

Here, ∆F ′ is the laser detuning from the |F mF 〉 −→ |F ′ mF 〉 transition, and ∆L is

now the detuning with respect to an arbitrary reference point (since it drops out of the

calculation of V0). This dipole moment can then be used within the context of the

two-level atom model.

2.5.6 Collisions

With experiments performed in a MOT, one obvious deviation from the single-atom

picture is due to collisions between the atoms in the MOT cloud. We can give very

rough estimates for the collision rate for the experimental conditions in a cesium MOT.

The s-wave collision cross section for cesium atoms polarized in the F = 4, mF = 4

state was measured to be 5 × 10−11 cm2 at a temperature of 5 µK in [231]. Note that

this cross section actually overestimates the situation in the unpolarized case. For the

experiments in Chapter 4, the MOT density was 1011 cm−3, and the mean velocity
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was around 3 cm/s for the initial condition. These values lead to an estimated collision

probability of only 2%/ms. For the experiments in Chapter 6, the MOT density was

much lower, around 108 cm−3, as a result of velocity selection. After state preparation,

the initial mean velocity was 0.8 cm/s, and thus the collision probability in this case was

the much smaller 0.4%/s.

2.5.7 Experimental Values

To illustrate the magnitudes of the effects that we have discussed in this section, we

calculate the values of these corrections (shown in Table 2.1) for several different sets

Table 2.1: Numerical values for the various effects described in Section 2.5. The three

columns correspond to the three different experimental parameter regimes described in

the text.

Parameter set Kicked Rotor Tunneling(1) Tunneling(2)

Rsc
(3) 1.1%/tp

(4) 0.040%/T (5) 0.010%/µs

Dsc
(6) 0.0039 �ωr/tp 1.3 × 10−4

�ωr/T 3.5 × 10−5
�ωr/µs

Dsdf
(7) 0.012 �ωr/tp 4.0 × 10−4

�ωr/T 1.0 × 10−4
�ωr/µs

|(V02 − V0)/V0|(8) 0.23% 1.2 × 10−6 6.3 × 10−6

|V04/V0|(9) 0.058% 3.0 × 10−7 1.6 × 10−6

Fv
(10) 5.3 × 10−8

�kL/tp −1.0× 10−11
�kL/T −2.7× 10−12

�kL/µs

|∆V0(mF )/V0(0)|(11) 1.6% 0.11% 0.11%

Collision rate ∼0.04%/T (12) ∼8× 10−8/T ∼4 × 10−9/µs

(1)Modulated standing wave interaction portion of the chaos-assisted tunneling experiment.
(2)State-preparation portion of the chaos-assisted tunneling experiment.
(3)Spontaneous emission rate, averaged over a lattice period.
(4)The pulse width tp = 300 ns is the relevant time scale for the kicked-rotor experiment.
(5)T = 20 µs is a typical relevant time scale for the chaos-assisted tunneling experiment.
(6)Rate of diffusion due to spontaneous emission, averaged over a lattice period.
(7)Rate of diffusion due to stochastic dipole fluctuations, averaged over a lattice period.
(8)Correction to potential amplitude (relative to V0).
(9)Amplitude of second harmonic potential component (relative to V0).
(10)Velocity-dependent force, averaged over a lattice period for the recoil velocity (vr = 3.5 mm/s).
(11)Largest relative magnetic sublevel shift of V0, normalized to the value formF = 0.
(12)The relevant time scale for this process is the T = 20 µs period of the potential.
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of experimental parameters. The first set of parameters corresponds to the experiments

in Chapter 4, where the optical lattice was pulsed to realize the kicked rotor. In these

experiments, the lattice was pulsed on for tp = 300 ns at a time; the maximum inten-

sity used corresponds to a Rabi frequency ofΩ/2π = 590 MHz, and the lattice detuning

was −6.1 GHz from the F = 4 −→ F ′ = 5 transition. The second set of parameters

describes the chaos-assisted tunneling experiments of Chapter 6, where the lattice am-

plitude was modulated as a cos2 function in time. A typical modulation period T here

was 20 µs, the detuning was ∆L/2π = −50 GHz and a typical (time-averaged) Rabi

frequency used was Ω/2π = 110 MHz. The third set of parameters also applies to

the chaos-assisted tunneling experiments, but to the state-preparation phase where the

atoms evolved in a somewhat deeper lattice (Ω/2π = 250 MHz), but shorter time scales

apply, since the atoms evolved in the full lattice for 6 µs (and for an additional 300 µs as

the lattice was gradually ramped up from zero intensity). The design of an experiment

necessarily entails many compromises, but we were able to keep the effects discussed

here to a very acceptable minimum.

2.6 Generalization to Two Nonidentical Traveling Waves

We now generalize the results derived so far to the case where the two traveling waves

have different amplitudes and frequencies. In this case, the electric field is

E(x, t) = ẑ[E01 cos(kL1x− ωL1t) +E02 cos(kL2x+ ωL2t)]

= ẑ
(
E01 e

i(kL1x−δLt/2) + E02 e
−i(kL2x−δLt/2)

)
e−iωLt + c.c.

=: E(−)(x, t) + c.c. ,

(2.56)

where ωL := (ωL1 + ωL2)/2 is the mean laser frequency, δL := ωL1 − ωL2 is the fre-

quency splitting between the two traveling waves, and we assume that |δL| � |∆L|,

with ∆L := ωL − ω0. Then, in the rotating-wave approximation, the interaction Hamil-

tonian becomes

H̃AF = −d̃(+) · Ẽ(+) − d̃(−) · Ẽ(−)

=
�

2

(
Ω(x, t)a†+ Ω∗(x, t)a

)
,

(2.57)
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where d̃ and Ẽ are defined as before, and the time- and space-dependentRabi frequency

is defined by

Ω(x, t) := −〈e|dz|g〉
�

(
E01e

i(kL1x−δLt/2) +E02e
−i(kL2x−δLt/2)

)
. (2.58)

Writing out the Schrödinger equation yields the two coupled equations

i�∂tψe =
p2

2m
ψe +

�

2
Ω(x, t)ψg − �∆Lψe

i�∂tψg =
p2

2m
ψg +

�

2
Ω∗(x, t)ψe .

(2.59)

Making the adiabatic approximation gives the relation

�∆Lψe =
�

2
Ω(x, t)ψg , (2.60)

and hence yields the equation of motion for the ground-state amplitude,

i�∂tψg =
(
p2

2m

)
ψg +

�

4∆L

|Ω(x, t)|2ψg . (2.61)

From Eq. (2.58), we find that

|Ω(x, t)|2 = |〈e|dz|g〉|2
�2

∣∣∣E01e
i(kL1x−δLt/2) + E02e

−i(kL2x−δLt/2)
∣∣∣2

=
|〈e|dz|g〉|2

�2

[
|E01|2 + |E02|2 + 2E01E02 cos(2kLx− δLt)

]
,

(2.62)

where kL := (kL1 + kL2)/2. Hence, we see that the atom obeys the center-of-mass

Schrödinger equation (i�∂tψg = Hψg), where the Hamiltonian, after a potential offset

has been subtracted, is given by

H =
p2

2m
+ V0 cos(2kLx− δLt) , (2.63)

and

V0 =
|〈e|dz|g〉|2E01E02

2�∆L

. (2.64)

Thus, the motion is the same as before, except that the standing wave moves with

velocity δL/2kL, and the potential depth is proportional to the geometric mean of the
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two traveling wave intensities. The velocity associated with the frequency difference

is intuitive, as in a frame of reference moving with respect to an optical lattice, the

two beams would be Doppler shifted in opposite senses, and would thus appear to have

different frequencies.

2.7 Quantum Dynamics in a Stationary Standing Wave

Now that we have derived the equations of motion for an atom in an optical lattice,

we will give an introduction to some aspects of the dynamics in the lattice that will

be important in later chapters. Before continuing, though it is worth providing a set of

scaled units in which to work. In order to simplify the Hamiltonian (2.34), we begin by

noting that we have the freedom to independently rescale the coordinates to eliminate

redundant parameters. There is a natural choice for the position scaling,

x′ = 2kLx, (2.65)

since the natural length scale is the λ/2 period of the standing-wave potential. In the

pendulum, there is no explicit time scale that must be eliminated, so we are free to

rescale such that Planck’s constant is effectively unity. Thus, demanding that [x′, p′] =

i, we find that

p′ =
p

2�kL
. (2.66)

Using these scalings in the unscaled Hamiltonian (2.34), we find

H ′ =
p′2

2
+ αp cos x′ (2.67)

upon identifying 8�ωr as the natural energy scale (recall that ωr = �k2L/2m), so that

αp = V0/(8�ωr) and H ′ = H/(8�ωr). Notice that this energy scaling implies a time

scaling of t′ = 8ωrt, since we have already determined how action is scaled. In what

follows we will drop the primes on the scaled units, and on occasion we will use unscaled

units to emphasize particular points.
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2.7.1 Bragg Scattering

The quantum-pendulum dynamics show a feature that is distinctly nonclassical: the

momentum transferred from the potential to the atoms is quantized. To see this directly,

we consider the Schrödinger equation in scaled units,

i∂t|ψ〉 =
(
p2

2
+ αp cos x

)
|ψ〉 . (2.68)

In the momentum representation, where ψ(p) := 〈p|ψ〉, the Schrödinger equation can

be rewritten as

i∂tψ(p) =
p2

2
ψ(p) +

αp
2
[ψ(p+ 1) + ψ(p− 1)] . (2.69)

This form follows from either recognizing exp(ikx) as a momentum-displacement oper-

ator, or by carrying out an explicit Fourier transform of the equation from the position to

the momentum representation. So, the evolution in the standing wave imposes a “lad-

der” structure in momentum, such that an atom beginning in a plane-wave state |p〉 can

only subsequently occupy the states |p+ n〉 for integer n. In unscaled units, the quan-

tization of the momentum is in multiples of 2�kL, which has a clear interpretation in

terms of the stimulated scattering of lattice photons: if the atom absorbs a photon that

was traveling in one direction and then re-emits it into the counterpropagating mode,

the atom will recoil, changing its momentum by twice the photon momentum, or by

2�kL. Of course, the argument that we just considered was based on a classical treat-

ment of the field, so it is the spatial periodicity of the potential that imposes the ladder

structure in this model. However, as we will see in Chapter 5, the momentum transfer

to the atoms can be viewed as a stimulated Raman transition between different motional

states (say, |p〉 and |p + 1〉). The coupling between these two levels is described by a

Raman Rabi frequency (as in the two-level atom), given by

ΩR =
Ω1Ω2

2∆L

, (2.70)

where Ω1,2 are the Rabi frequencies associated separately with each traveling-wave com-

ponent of the standing wave, and∆L is the mutual detuning to the atomic excited state



60

(the relative frequency difference is constrained by energy conservation to be the split-

ting between the motional states). To connect with the notation that we have already

used, Ω1 = Ω2 = Ω/2 for the case of identical traveling waves, so that �ΩR = V0, and

thus V0 also represents the strength of the Raman couplings.

The two-photon, stimulated Raman transition is an example of a Bragg scatter-

ing process [232–234]. In fact, it is the simplest (“first-order”) form of Bragg scatter-

ing; in general, nth-order Bragg scattering is a 2n-photon transition spanning an interval

of 2n�kL in momentum. The term “Bragg scattering” applies to the weakly coupled

regime, where the intermediate states are not appreciably populated, and so the transi-

tion between the two distant momentum states can be treated as a two-level problem.

In this regime, classical transport between these distinct momentum regions is forbid-

den, as the classical potential is not sufficiently strong to cause a correspondingly large

change in the classical momentum. As such, Bragg scattering is an example of dynamical

tunneling, which is quantum tunneling between regions in phase space between which

classical transport is forbidden, but by the dynamics (here, the nature of asymptotically

free-particle motion) rather than by a potential barrier.

Although the potential has a small amplitude, quantum coherence can build up

wL

4wr

p = 0

Lp = 2hÑkLp = -2hÑk

Figure 2.1: Level diagram for second-order Bragg scattering. This process occurs as a

pair of two-photon Raman scattering processes, coupling the 2�kL momentum level to

the −2�kL level. The Bragg treatment is valid when the two-photon Rabi frequency ΩR
is small compared to the detuning 4ωr from the intermediate state, which can then be

adiabatically eliminated from the problem.



61

as the atoms sample the potential and cause the atoms to significantly change their mo-

tion. We will illustrate this process by considering the relatively simple case of second-

order Bragg scattering, and then we will generalize our results to the nth-order case. We

consider the case where the standing wave is stationary, so that only the states |−2�kL〉

and |2�kL〉 are resonantly coupled (we will stick to unscaled units for this derivation to

emphasize the connection to the “quantum optics” view of the atomic motion) in the

limit of small ΩR. No other states will be substantially coupled by these fields, unless

the Raman Rabi frequency is large enough to power-broaden the off-resonant transitions,

which would not correspond to the Bragg regime. The relevant energy-level diagram is

shown in Fig. 2.1, which shows that the detuning from the |0〉 motional state is simply

the kinetic-energy shift. Neglecting couplings to other states (which are even further

detuned than the |0〉 state), the Schrödinger equation for the three coupled momentum

states then becomes

i�∂tψ(−2�kL, t) =
(2�kL)2

2m
ψ(−2�kL, t) +

�ΩR
2
ψ(0, t)

i�∂tψ(0, t) =
�ΩR
2
[ψ(−2�kL, t) + ψ(2�kL, t)]

i�∂tψ(2�kL, t) =
(2�kL)2

2m
ψ(2�kL, t) +

�ΩR
2
ψ(0, t) .

(2.71)

Adding an energy offset of −4�ωr, the equations become

i�∂tψ(±2�kL, t) =
�ΩR
2
ψ(0, t)

i�∂tψ(0, t) =
�ΩR
2
[ψ(−2�kL, t) + ψ(2�kL, t)]− 4�ωrψ(0, t) .

(2.72)

Now we assume that ΩR � 4ωr, so that the population in the |0〉 state is O(Ω2
R/ω

2
r ) and

hence negligible. Additionally, we can make an adiabatic approximation for the evolution

of the |0〉 state, by formally setting ∂tψ(0, t) = 0, as we did in Section 2.4. Again, though,

this is a shortcut for considering the density-matrix picture and replacing the rapidly-

varying coherences with their locally average value (although this procedure is a result of

coarse-graining here, rather than radiative damping as in the previous treatment). Doing
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so leads to the adiabatic relation

4ωrψ(0, t) =
ΩR
2
[ψ(−2�kL, t) + ψ(2�kL, t)] , (2.73)

which can be used to eliminate the intermediate state, resulting in a two-level evolution:

i�∂tψ(±2�kL, t) =
�Ω2

R

16ωr
[ψ(±2�kL, t) + ψ(∓2�kL, t)] . (2.74)

Hence the second-order Bragg Rabi frequency is ΩB,2 = Ω2
R/8ωr. (The first term repre-

sents a Stark shift of ΩB,2/2, while the second term represents the Rabi-type coupling.)

Comparing this expression to the form (2.70) for the two-photon Rabi frequency, we

see that this second-order Bragg process can be viewed also as a Raman process of two

Raman transitions, where the detuning to the intermediate state∆L is identified as 4ωr.

Continuing in this manner, the Bragg rate for nth-order scattering from n�kL to

−n�kL is given by [233]

ΩB,n =
ΩnR

2n−1
n−1∏
k=1

δk

, (2.75)

where δk is the detuning of the kth intermediate motional state. Notice that the inter-

mediate detunings are given by [n2−(n−2)2]ωr, [n2−(n−4)2]ωr, . . . , [n2−(2−n)2]ωr,

so that this Bragg frequency can be written as

ΩB,n =
ΩnR

(8ωr)n−1[(n− 1)!]2
(2.76)

In scaled units, we can rewrite this frequency as

Ω′B,n =
αnp

[(n− 1)!]2
. (2.77)

The transition frequency obviously becomes small for high-order Bragg processes, as the

Rabi frequency decreases exponentially with the order. Nevertheless, Bragg oscillations

of up to sixth [233] and eighth [235] order have been observed experimentally for an

atomic beam crossing an optical standing wave.
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2.7.2 Band Structure

As with any periodic potential, the eigenenergies for the atom in an optical lattice are

grouped in bands, which are continuous intervals of allowed energies, separated by

“band gaps” of forbidden energies. As this structure is relevant to some of the ex-
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Figure 2.2: Plot of the allowed energy bands as a function of V0/8�ωr (or equivalently
αp). The energies are also normalized to the natural unit scale 8�ωr, and are plotted
relative to the potential minima. The shaded regions represent allowed energies, the

solid lines represent the “edges” of the allowed bands, and the dashed line represents

the energy of the peaks of the lattice.
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periments performed in this dissertation, we will treat this subject briefly. From Flo-

quet’s theorem (or equivalently, Bloch’s theorem), the spatial periodicity of the time-

independent Schrödinger equation for an atom in an optical lattice,(
p2

2
+ αp cosx

)
ψ = Eψ , (2.78)

implies that the solutions will be plane waves modulated by a periodic function,

ψq = eiqxuq(x), (2.79)

where uq(x + 2π) = uq(x), and q is the “Floquet exponent” or “quasimomentum,”

which parameterizes the family of solutions. The eigenenergies and eigenfunctions can

be computed using standard matrix-diagonalization methods to find solutions of the

Mathieu equation [236–238]; the numerically calculated energy bands are plotted in

Fig. 2.2 as a function of αp. By convention, the quasimomentum is restricted to the
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Figure 2.3: Plot of the lowest three energy bands for αp = V0/8�ωr = 0.2, where the
band energy is plotted as a function of the quasimomentum q. This band structure

is in the weakly coupled regime, where the lowest bands have significant curvature.

The dashed line at the scaled energy of 0.4marks the maximum potential energy of the

lattice. The band gaps are a result of Bragg diffraction, which couples states with integer

or half-integer quasimomentum and induces avoided crossings at these quasimomenta.
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range [−1/2, 1/2), and the integer part n of the full quasimomentum is called the “band

index.” Note that solutions with the same reduced quasimomentum q are similar in that

they can be written in terms of plane-wave solutions with the same reduced quasimo-

mentum:

ψn,q =
∞∑

k=−∞
cn,ke

i(k+q)x . (2.80)

The energy bands are plotted as a function of the reduced quasimomentum for a small

value of αp in Fig. 2.3.

The band structure for small well depths can be understood in terms of Bragg

scattering. In the free-particle case, the energy structure is that of a free particle, so that

the energy is simply q2/2, where we identify the quasimomentum with the real particle

momentum. Bragg processes then couple certain degenerate pairs of the quasimomenta

(the half-integer values), which are precisely the locations where the band gaps form.

These band gaps can be viewed as avoided crossings of the energy as the quasimomen-

tum varies. The avoided-crossing nature of the band gap is clear from the gaps plotted

in Fig. 2.3, and the locations of the band gaps on the left edge of Fig. 2.2 are spaced ac-

cording to n2, as expected in the free-particle limit. As the bands make the transition to

the deep-well limit (as in the right side of Fig. 2.2), they become narrow, as expected for

trapped states. The band gaps becomes more uniform in size as well, as is expected for

harmonic-oscillator states, which the lattice wave functions approach in the deep-well

limit, when they only “see” the parabolic bottoms of the wells.

For our purposes there are two properties of the lattice wave functions that will

be important. First, as long as the sinusoidal potential is the sole interaction potential

for the atoms, the reduced quasimomentum is a constant of the motion, even if the

lattice is temporally modulated. This property is simply a manifestation of the ladder

structure that we already mentioned. The second property is that for slow changes of

αp, the band index is an adiabatic constant of the motion. This property is important in

preparation of atomic states, because if the atoms can be cooled so that their momenta
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are within (−�kL, �kL) in free space, they will be loaded into the lowest energy band

when the lattice is turned on adiabatically.

2.7.3 Boundary Conditions

Finally, we make a short comment on the nature of a “rotor” vs. a “particle,” and the

relevance of these ideas to optical-lattice experiments. A pendulum in the usual sense

has an angle as a coordinate, and the coordinate space is equivalent to a 1-torus. In

an extended realization of the pendulum, as in the optical lattice, the coordinate space

is extended and formally equivalent to a line. The identification of the two situations

comes from the periodicity of the potential in the extended case. Classically, there is

no problem making this identification, since one can always take the extended coordi-

nate modulo the period of the potential. Quantum mechanically, however, the bound-

ary conditions in the two cases can lead to drastically different energy-level structures.

Specifically, the periodic boundary condition in the case of the rotor implies that the

spectrum is discrete, because only the integer quasimomentum states exist. In other

words, the periodic boundary conditions pick out an obviously special class of states

(the q = 0 “symmetric ladder,” where each state is coupled to its degenerate partner

via Bragg scattering) out of the possible continuum of ladders in the extended (particle)

case. This difference has various consequences for atom-optics experiments, one of the

most dramatic being that in Bragg scattering and chaos-assisted tunneling experiments,

the transport only occurs for a relatively small set of states, which would naturally be

selected in the case of a true rotor. In the case of dynamical localization as in Chapter 4,

the localization still occurs in the particle case, although much of the theoretical analy-

sis in the literature is for the rotor, which is obviously much simpler. Thus, despite this

distinction, we will use the term “kicked rotor” to refer as well to the kicked particle.



Chapter 3

Experimental Apparatus I

3.1 Overview

Now we turn our attention to the experimental apparatus. In this chapter, we will con-

fine our discussion to the basic parts of the apparatus that were necessary to carry out the

experiments in Chapter 4. For the later experiments on chaos-assisted tunneling (Chap-

ter 6), several major improvements were made to the apparatus, and these changes are

discussed in Chapter 5.

The apparatus that we discuss here includes several parts. We begin by dis-

cussing the various laser systems involved in the experiment. Two diode lasers provided

the light that trapped, cooled, and performed the measurements on the cesium atoms,

and they are discussed separately in Sections 3.2 and 3.3. We will not discuss the general

operation of a magneto-optic trap (MOT), as these traps have become quite common-

place (a nice discussion can be found in [169]); rather, we will give the specifics of our

implementation and discuss how they impact the analysis of the experimental results.

The optical lattice, which was the heart of the experiment, was provided by a home-

built Ti:sapphire laser system, which is described in Section 3.4. For these experiments

to work, the atoms had to be extremely well isolated from their surroundings, so they

were trapped in an ultrahigh-vacuum system, detailed in 3.5. Finally, we discuss the ex-

perimental measurement procedure in Section 3.7 and the electronics needed to control

the experiment in Section 3.8.

We will concentrate mostly on the salient features of the experiment, since

67
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much of the information in this chapter has already been covered in the dissertation

of Bruce Klappauf [203].

3.2 DBR Laser

The basic operation of laser cooling in a MOT requires stabilized laser light tuned

slightly to the red of an atomic transition. In the experiments here, we used the light

from a distributed Bragg reflector (DBR) laser diode (model SDL-5712-H1, manufac-

tured by SDL, Inc., which is no longer available as of the time of writing), which drove

the F = 4 −→ F ′ = 5 hyperfine component of the cesiumD2 transition. The advantage

of a DBR laser is that it incorporated a frequency-selective element that narrows its line

width and causes it to lase near the desired wavelength (852 nm, in our case). The fre-

quency of the laser is coarsely tuned by changing the diode temperature, and fine-tuning

is achieved by adjusting the injection current. This particular laser nominally produced

100 mW of power with 180 mA of current, and incorporated a thermoelectric cooler and

thermistor within the TO-3 package for convenient temperature stabilization.

3.2.1 Construction and Operation

The current and temperature controllers for the DBR laser were nuclear instrument

module (NIM) style units that were designed and produced by Leo Hollberg’s group

at NIST-Boulder. These units worked extremely well, providing quiet current sources

with reliable protection for the laser from electrical transients. The diode laser was also

protected from electrical transients with several “protection diodes” in the cable con-

nected to the laser diode, as suggested by [239]. The protection-diode circuit, placed

only a few inches from the laser diode, comprised a fast 1N5711 diode connected across

the laser diode, but in the opposite direction, to protect against reverse voltages; and

four 1N914 diodes in series connected across and in the same direction as the laser

diode, to protect against overvoltages. The DBR diode was mounted on a commercial,

air-cooled heatsink mount (model SDL-800 heatsink, with a model SDL-800-H adaptor
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plate, both by SDL, Inc.). This mount was bolted to a stainless steel post, which was in

turn clamped to the optical table. The laser light was collimated by an antireflection-

coated lens, Rodenstock model 1403-.108-.020, which had a focal length of 5 mm and

a numerical aperture of 0.5. The lens was originally mounted on a three-dimensional

translation stage, for precise and flexible positioning. However, thermal creep in this

setup necessitated a nearly daily adjustment of this lens to keep the beam line correctly

aligned. To solve this problem, we implemented a method used in the ultracold atom

group at the Laboratoire Kastler Brossel in Paris, illustrated in Fig. 3.1 (a photograph

of the DBR laser assembly is also shown in Fig. 3.2). The lens, which came mounted

in a cylindrical aluminum case, was bonded to the end of a rod using a small drop of

five-minute epoxy. The rod was in turn attached to a rotation stage and then an x-y-z

translation stage for precise positioning. The lens was then adjusted into the desired

position over a V-grooved block that was attached directly to the laser diode heatsink

mount. Two glass rods were then dropped gently onto the lens and V-groove, effectively

filling in the space between them. This assembly was then bonded together by running

beads of 24-hour epoxy using a syringe along the contact lines of the glass rods. After

the epoxy was set, the bond for the positioning setup was broken. The setup (after

the collimating lens) required minor adjustments for a few weeks as the bonds settled,

but later the beam line became very stable, often remaining aligned for months without

adjustment.

After collimation, the light was reshaped by an anamorphic prism pair (byMelles

Griot) to be nearly circular, although the astigmatism of the beam required a cylindrical-

lens telescope later in the beam line to maintain circularity. The beam then passed

through two optical isolators (Conoptics, Inc. model 713), for 77 dB measured total iso-

lation, because the DBR laser was especially sensitive to back reflections (compared

to the grating-stabilized laser). This isolation came at a cost of 20% of the optical in-

tensity. Another 10% of the light was split off for the saturated absorption setup used

to frequency-lock the laser, as described below, leaving about 73 mW of power in the
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main beam. The beam was then double-passed through a tunable 60-100MHz acousto-

optic modulator (AOM), an IntraAction Corp. model ATD-801AL2. Since the laser was

locked 195MHz to the red of the F = 4 −→ F ′ = 5 “cycling” transition, the light after

the double-pass setup could be tuned from−75MHz to+5MHz relative to the cycling

transition. We used a detuning of −15 MHz for normal (loading) trap operation. This

AOM also controlled the intensity of the trapping light. The beam was focused through

a 25 µm pinhole to clean its spatial profile, leaving about 27mW of power. The diverging

beam after the pinhole was collimated, with a beam waist parameter w0 = 11 mm, to

ensure a uniform illumination of the atoms. This light was split with two 2” diameter

beamsplitters (66% and 50%) into three beams of equal power. Each of these beams

passed through a 1.5” diameter quarter-wave plate before entering the vacuum cham-

ber that contained the MOT, to give the beams the appropriate circular polarization for

proper MOT operation. The beams were retroreflected through another set of quarter-

wave plates after they exited the chamber. This setup provided the usual six-beam

σ+ − σ− molasses configuration, and together with the anti-Helmholtz magnetic field

coils (described below), provided the usual six-beam MOT configuration. A diagram of

this beam line, along with the other two laser setups, is shown in Fig. 3.3.

3.2.2 Saturated Absorption Spectroscopy

The 10% of the beam that was picked off before the AOM was used to perform satu-

rated absorption spectroscopy [239, 240] on the light for frequency stabilization. The

thermal motions of cesium atoms in a vapor cell smear out the optical resonances, and

the resulting Doppler line width [241] of cesium at room temperature is around 0.4

GHz. This width is much larger than the 5 MHz natural width of the cesium hyper-

fine resonances, and is even larger than the splittings between the excited hyperfine

levels, so that these states cannot be resolved by simple absorption spectroscopy. The

idea behind saturated absorption spectroscopy is that the atoms are illuminated by two

counterpropagating beams of the same frequency (a “pump” and a “probe”), where the
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intensity of one of the beams (the probe) is monitored. The Doppler-broadened line

will be apparent as usual, but at the resonance frequencies, the two beams will pick out

the zero-velocity atoms, because only these atoms will be simultaneously pumped by

both beams (for moving atoms, the two beams will be Doppler-shifted to two different

frequencies). The spectral manifestation of this effect is that there are narrow “Lamb

dips” in the Doppler-broadened background, because these atoms are more saturated at

certain frequencies and thus are more transparent to the probe beam. The Lamb dips

occur at the atomic hyperfine resonances and also at “crossover resonances,” which occur

halfway between pairs of hyperfine resonances (in these cases, the two beams pick out

atoms moving such that the two Doppler-shifted beams excite two different hyperfine

transitions, and thus still oversaturate the atoms). The widths of the Lamb dips are

affected by many factors, including beam alignment, beam intensity, and cell pressure,

but the width of the dips can be made comparable to the natural line width.

The saturated absorption spectrum thus provided high-resolution, frequency-

Top View

¯0.16" glass rod

Collimation lens

DBR laser diode

Front View

Figure 3.1: Diagram of DBR laser diode and collimation lens hardware. Only the front

plate of the mounting heatsink is shown. A custom aluminum block with a V-groove was

bolted to the front of the mounting plate. The collimation lens, which was mounted in

a cylindrical aluminum housing, was held in place above the groove by two glass rods.

The collimation lens, glass rods, and V-groove block were bonded together with 24-hour

epoxy, resulting in a very stable configuration.
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dependent spectral features by which the DBR laser frequency could be determined.

In the sense of actively stabilizing the frequency of the laser, though, these dips are not

so convenient, because it is necessary to lock to a sloping part of a spectral feature. It

is possible to lock to the side of a Lamb dip, but then the laser frequency would be

sensitive to the width of the dip, which could drift in time. A more convenient situa-

tion arises for a dispersive (as opposed to absorptive) line shape, where the maximum

slope occurs at the center of the resonance. One way to obtain such a shape is through

frequency-modulation (FM) spectroscopy [242]. In this technique the frequency of

the laser light is modulated, and phase-sensitive detection produces the dispersive line

shape. In our setup, the probe beam was modulated at 11MHz using a Conoptics model

350-40 electro-optic phase modulator (EOM) before passing through a 75 mm long ce-

sium vapor cell (made by Environmental Optical Sensors, Inc.), where it overlapped the

Figure 3.2: Photograph of the DBR laser, showing the laser itself inside the gold-toned

TO-3 package, the mounting heatsink, and the collimation lens assembly.
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counterpropagating pump beam. The probe was monitored with a New Focus model

1801 low-noise photodiode, and the photodiode signal was mixed with the phase-shifted

signal that drove the EOM. Additionally, the pump beam was double-passed through a

70MHz AOM, which was chopped on and off at 50 kHz. The mixed-down photodiode

signal was then processed by a Stanford SR510 lock-in amplifier, with this chopping sig-

nal as the reference. The consequences (beyond the usual noise immunity of lock-in

detection) of this pump-beam modulation were twofold: first, the spectrum was shifted

to the red by 70MHz, because the pump and probe beams were 140MHz apart, and sec-

ond, the Doppler contribution to the spectrum was suppressed, because only the Lamb

dips (and not the Doppler-broadened absorption shape) were affected by the presence

or absence of the pump beam. A spatial filter with a 75 µm pinhole placed in the input

beam of this setup greatly enhanced the quality and reproducibility of the spectrum by
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(Optical Lattice)
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Pump Laser
(Argon Ion)

llll/4
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Diode Laser
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Figure 3.3: Layout of optical table, showing the schematic beam paths of the DBR diode

laser (which provided the MOT trapping light), the external cavity diode laser (which

provided the repumping light for the MOT), and the Ti:sapphire laser (which produced

the optical lattice for the time-dependent interaction).
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reducing fringes on the DBR laser beam, which had a relatively poor spatial mode qual-

ity. The measured spectrum for our setup is shown in Fig. 3.4. Because of the tunability

requirements of the MOT trapping light, and the fact that the F = 4 −→ F ′ = 4, 5

crossover transition was the largest and cleanest feature in the spectrum, we locked the

DBR laser to this crossover and shifted the laser frequency closer to the MOT cycling

transition (before the beam entered the chamber) as described above. The laser was

locked to the crossover resonance using a standard P-I feedback loop to the laser injec-

tion current. This detection and locking method was considerably more complex than

the method implemented for the repumping laser diode, but the advantage of this setup

was that the main beam that went to the chamber was not frequency-modulated. Af-

ter active locking, the line width of the DBR laser was on the order of 1 MHz, which

is not nearly as narrow as is possible with other (e.g., grating feedback) stabilization
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Figure 3.4: Saturated-absorption spectrum for the cesium D2 line F = 4 −→ F ′ hy-
perfine manifold, as measured by the DBR laser setup described in the text. The three

excited-state hyperfine levels coupled to the F = 4 ground state are visible along with
the three crossover transitions (labeled by pairs of quantum numbers) as dispersive res-

onances. The DBR laser was actively locked to the F ′ = 4, 5 crossover resonance during
normal MOT operation.
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techniques. It may have been possible to improve this line width electronically by us-

ing a much faster feedback loop, but this setup was certainly sufficient for the cooling

and trapping of atoms. More details, as well as schematic diagrams, of this saturated

absorption setup can be found in [203].

3.3 Grating-Stabilized Diode Laser

Although the F = 4 −→ F ′ = 5 trapping transition is in principle a closed cycling

transition (because the F ′ = 5 state decays only to F = 4), the trapping light can off-

resonantly excite one of the other excited hyperfine levels, which could then decay to

the F = 3 “dark state,” in which case the trapping laser would no longer cool the atom.

The DBR laser alone was therefore insufficient on its own to trap cesium atoms. To

address this problem, a “repumping” laser, tuned to the F = 3 −→ F ′ = 4 transition,

was used to return atoms in the dark state to the cycling transition. For this repumping

light, we employed a home-built, grating-stabilized (pseudo-external cavity) diode laser

system [239, 243]. This laser system was constructed in the Littrow configuration,

where a grating was placed in front of the laser such that the first-order diffracted beam

was reflected back into the diode, while the zeroth-order light was taken as the laser

output. The grating thus served as a wavelength-selective component, which narrowed

and controlled the lasing frequency.

3.3.1 Construction and Operation

A diagram of the Littrow laser is shown in Fig. 3.5, and a photograph of the assembled

laser is shown in Fig. 3.6. The diode laser was a model 5421-G1 laser by SDL, Inc.,

which is housed in a standard 9 mm package, and nominally produced 150mW with 200

mA of injection current. The diode was mounted in a Thorlabs model LT230P-B colli-

mation tube, which included a collimating lens with focal length 4.5 mm and numerical

aperture 0.55. The collimation-tube assembly was mounted in a structure made of 954

aluminum bronze, which also supported the diffraction grating. This material had high
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strength and resistance to fatigue, which was important because the adjustability of the

system relied on the flexing of thin sections of the structure, and the material also had

reasonably good thermal conductivity, which facilitated temperature stabilization.

The diffraction grating was a 1/2”×1/2” section of an inexpensive Edmund Sci-

entific E43,005 grating, which was 3/8” thick and blazed for 500 nm (17◦). We had a 500

Å gold coating (over a 60 Å chromium coating to facilitate adhesion) evaporated onto the

stock aluminum coating to improve the reflection efficiency. At the Littrow angle (31◦),

the coated grating diffracted 21% of the input power into the first (retroreflected) order

and 67% into the zeroth-order beam. The grating angle was set by two New Focus 9300-

series fine-adjustment screws, whose ball-ends contacted sapphire windows for precise

and stable alignment. Additionally, the horizontal grating angle was controlled by a piezo

stack, which provided electronic tuning capability. The piezo stack was assembled from

three American Piezo Ceramics piezo discs, which were 8 mm in diameter and 2.54mm

thick. The stack had a maximum voltage of 1500 V, a capacitance of 39 pF, and a dis-

placement of 1.35 µm at 1 kV (the laser tuning rate was 12 GHz/µm of displacement),

and the stack was driven by a Trek model 601B-4 high-voltage (1 kV) amplifier, which

had the upsetting habit of periodically self-destructing. Although we designed the pivot

point of the horizontal adjustment to be near the optimal location [244], the laser could

only be scanned for 1 GHz frequency intervals without mode hops. This restricted tun-

ability was likely due to a competition between the pseudo-external cavity modes and

the free-running laser diode modes. Some possible solutions would include using an

antireflection-coated diode or scanning the injection current along with the grating an-

gle to match the corresponding modes. However, this setup was certainly sufficient to

scan continuously over the F = 3 −→ F ′ = 4 excited-state manifold, and has operated

for years without mechanical intervention.

We used a second set of NIST current and temperature modules (as with the

DBR laser) to control the laser, with the same protection diodes as in the DBR laser. The

temperature of the aluminum bronze structure was monitored with a Fenwal Electronics
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Figure 3.5: Diagram of the grating-stabilized diode laser for driving the repumping tran-

sition for the MOT. The top view shows the main elements involved in the operation

and tuning of the laser, while the bottom view shows how the laser assembly is mounted

and thermally stabilized.
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50 kΩ glass-bead thermistor, and a separate Analog Devices AD590 temperature sensor

provided the panel reading on the NIST temperature controller. The bronze structure

was attached to an aluminum base plate with nylon screws, and a Melcor CP1.0-127-05L

thermoelectric cooler was sandwiched between them to provide active temperature con-

trol over the bronze structure. Because the diode laser was operated near room temper-

ature, the aluminum plate was an adequate thermal reservoir. A Lucite cover provided

thermal and also some acoustical isolation from the surroundings, and a microscope slide

at Brewster’s angle allowed the light to escape from the housing. The base plate was

mounted rigidly to the optical table with four 1” diameter stainless steel posts, so that

mechanical resonances would occur only at high frequencies. A second aluminum plate

was bolted directly to the bottom of the base plate with a layer of 1/8” thick Sorbothane

viscoelastic damping material between the two, in order to damp any vibrations of the

Figure 3.6: Photograph of the grating-stabilized laser assembly, used for the MOT re-

pumping light.
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base plate.

As in the case of the DBR laser, the Littrow laser output beam was passed

through an anamorphic prism pair to make the beam circular before it passed through

a single Conoptics isolator. The beam then made a single pass through a 100.5 MHz

AOM, which shifted the frequency to the blue (because the laser was again locked to

a crossover transition rather than the desired line itself) and provided intensity control

for the repumping light. The beam was then spatially filtered and expanded to nearly

the same size as the MOT beams, and was combined with only the vertical MOT beam

(i.e., the beam along the symmetry axis of the anti-Helmholtz coils, described below) by

a 1.5” polarizing cube beamsplitter before passing through the large quarter-wave plate

mentioned above. With a typical operating current of 93 mA, this setup provided about

40 mW of power after the grating, and about 16 mW of repumping light after the spatial

filter, which was far above the necessary intensity for proper MOT operation.

3.3.2 Frequency Control

The frequency of this laser was also locked via a saturated-absorption setup, which was

considerably simplified compared to the setup for the DBR laser. The optical setup we

used here is essentially the same as the one described in [239, 245]. About 10% of the

repumping beam was split off of the main beam before the AOM, which then passed

through a 3/8” thick uncoated window. The reflections from the window provided a

pair of probe beams with about 1% of the main-beam intensity, and passed through a

cesium vapor cell (identical to the vapor cell used in the DBR setup). The remainder

of the picked-off beam formed the pump beam, overlapping one of the probe beams in

the vapor cell in a counterpropagating fashion. The intensities of the probes were de-

tected and subtracted by a differential photodetector. The Lamb dips only appeared on

the probe beam that overlapped the pump beam, while the Doppler absorption profile

appeared as a common mode signal on the two beams, and was thus removed by the

subtraction. Again, from the standpoint of active frequency locking, it was convenient
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to have a dispersive signal. To achieve this, we dithered the laser frequency by apply-

ing a small 12 kHz signal to the piezo stack, and the subtracted photodiode signal was

analyzed by an EG&G model 5204 lock-in amplifier. The dither had the disadvantage

that the main repump beam was modulated, but the frequency excursion was not more

than a few MHz, and the MOT operation was relatively insensitive to the repump char-

acteristics, because the atoms spent a relatively small fraction of their time out of the

cycling transition. The measured saturated-absorption spectrum for this setup is shown

in Figs. 3.7 and 3.8 (see also [203] for other details of this setup, including a diagram of

the optics and electronics). This signal was then fed back to the piezo control amplifier,

using another P-I lock circuit based on the design in [245]. The laser was locked to

the F = 3 −→ F ′ = 3, 4 crossover transition, which was the strongest feature in the

spectrum, and the AOM shift of the main beam brought the repump light to the center

of the F = 3 −→ F ′ = 4 repumping transition resonance. With this fairly simple setup,
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Figure 3.7: Saturated absorption spectrum for the cesium D2 line F = 3 −→ F ′ hyper-
fine manifold, as measured by the grating-stabilized (repumping) laser setup described

in the text. The signal plotted here is the output of the differential photodiode, so the

resonances appear as absorptive line shapes. The spectrum after additional processing

by the lock-in amplifier to extract the dither information is shown in Fig. 3.8.
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the diode laser remained locked to the proper frequency for hours, provided the optical

table was not bumped too severely, and only required occasional adjustment of the in-

jection current to move the laser mode-hop points away from the hyperfine resonances.

3.4 Ti:sapphire Laser

The two diode lasers worked quite well for cooling and trapping atoms, but to realize

a clean optical lattice, we required a high-intensity, far-detuned source of light. These

requirements were met by a home-built Ti:sapphire laser. This laser, when pumped

by a Coherent Innova 90 argon-ion laser (producing about 8 W of power in multi-line

mode) produced 0.5 W of single-mode light, tunable several nm around 852 nm. This

laser (along with the associated control electronics) was originally a dye laser, built by

Patrick Morrow, and was similar to a dye laser used in the sodium-based apparatus in
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Figure 3.8: Saturated absorption spectrum for the cesium D2 line F = 3 −→ F ′ hyper-
fine manifold, as measured by the grating-stabilized (repumping) laser setup described

in the text. The signal plotted here is the output of the lock-in amplifier, which extracts

the frequency-dither information from the signal, so that the resonances are dispersive.

This spectrum is otherwise the same as that shown in Fig. 3.7. During normal operation,

the repump laser is actively locked to the F = 3 −→ F ′ = 3, 4 crossover resonance.
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our laboratory [199, 246]. The dye laser and the subsequent conversion to a Ti:sapphire

laser were based on designs by Jim Bergquist at NIST-Boulder.

3.4.1 Laser Design and Construction

The basic layout of the Ti:sapphire laser is shown in Fig. 3.9, and a photograph of the

laser is shown in Fig. 3.10. The overall construction of the laser was a series of 1” thick

aluminum plates mounted on four long 1” diameter Invar rods, providing a stable frame

for mounting the laser components. The mirrors were mounted on plates that were in

turn mounted on the main plates by extension springs and Bill Lees fine-adjustment

screws.

The crystal itself was produced by Union Carbide. The crystal was doped with

0.05% titanium, with a guaranteed figure of merit ≥ 450, and was 6 mm in diameter

and 20 mm long, with Brewster-cut ends. The crystal was mounted in a split copper

disk, which was in turn water-cooled. We found that the water cooling was necessary for

efficient laser operation.

The cavity was a four-mirror, folded-ring design. The two mirrors on either side

of the crystal (in the beam path) were the “pump mirrors,” which allowed the argon-ion

light in and out of the cavity. These mirrors were coated by VLOC (now a part of II-VI,

Inc.), and were specified to transmit at least 90% at 488 and 514 nm, while maintaining

at least 99.9% reflectivity at 852 nm. These two mirrors also had a 20 cm radius of

curvature, while the other two mirrors were flat. The arrangement of the mirrors and

crystal was such that the aberrations introduced by the Brewster surfaces and the off-axis

curved mirrors cancelled [247], leading to clean Gaussian intensity profiles both inside

the crystal and at the output coupler. The output coupler had a reflection coefficient of

97.3% (several other output couplers in the 90-95% range failed to give better output

powers). The fourth mirror was small and mounted on a piezo stack to give rapid control

over the cavity length. The cavity mode was focused to its tightest point inside the

crystal (to a waist w0 on the order of 40 µm), and the beam at the output coupler had a
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waist around 0.7mm. The argon-ion beam was focused by a lens (175 mm focal length)

to match the cavity mode inside the crystal, and the lens was tilted to compensate for

the aberrations introduced by the Brewster-cut crystal end and the propagation through

the slightly curved mirror (the axis of the tilt was perpendicular to the plane of the

cavity mode).

The cavity also included several optical devices for stable, single-mode opera-

tion, some of which are visible in Fig. 3.11. An optical diode (optical rotator/Faraday

rotator pair, manufactured by Coherent Laser Group for their model 899 Ti:sapphire

laser) forced unidirectional lasing by rotating the polarization of light propagating in the

wrong direction. A birefringent filter, also manufactured by Coherent, provided coarse

frequency tuning, making use of the frequency-dependent polarization shift of three

birefringent plates. Single-mode operation was enforced by a Coherent intracavity as-

sembly (ICA), which housed two etalons, a thick etalon and a thin etalon. The thick

etalon, which had a free spectral range (FSR) of 10 GHz, was dithered and actively

locked to maximize the laser power. The thin etalon, with a 225 GHz FSR, was used

to select the longitudinal cavity mode of operation, in roughly 10 GHz steps. The laser

frequency could be tuned continuously by a pair of Brewster plates, mounted on gal-

vanometer drives, to vary the cavity length; the two windows were arranged to cancel

deflections caused by their synchronous rotation. The short-term line width of the laser

was around 10MHz, as measured by a Fabry-Perot cavity with a similar resolution, with

fluctuations at the 100MHz level during a data run.

3.4.2 Laser Operation and Control

The laser could be actively locked to arbitrary frequencies by using a polarization-based

spectroscopic technique [248] to derive a dispersive lock signal from a 1.5 GHz FSR

stable Invar Fabry-Perot cavity. The cavity resonance could be tuned continuously by

adjusting the angle of a Brewster plate inside the cavity. In practice, though, the Ti:sap-

phire laser was stable enough that active frequency locking was unnecessary.
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The frequency of the laser was monitored on a NIST LM-10 wavemeter (scan-

ning Michelson interferometer), which measured the absolute laser wavelength by di-

rect comparison to a known, stabilized HeNe reference laser. The resolution of the

wavemeter was limited to about 500 MHz, so the Ti:sapphire beam was measured si-

multaneously with the DBR laser beam by a scanning “monitor” Fabry-Perot cavity with

a 1.5GHz FSR. The Ti:sapphire laser was tuned so that the resonances of the two lasers

were aligned, and thus the frequency could be known to much better than 1.5 GHz.

The Ti:sapphire beam intensity was controlled by an 80 MHz fast AOM (IntraAction

model ATM-801A2-2), which shifted the frequency 80 MHz to the blue. Since the

DBR laser beam (before the AOM) was 195MHz to the red of the F = 4 −→ F ′ = 5

transition, and it was the zeroth-order beam of the Ti:sapphire AOM that was mea-

Figure 3.10: Overall photograph of the Ti:sapphire laser. The view is from the pump

input end of the laser, and the pump light input periscope is visible here. The argon-ion

laser is also visible behind and to the right of the Ti:sapphire laser.
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sured by the cavity, the frequency of the optical lattice seen by the cesium atoms was

n × 1.5 GHz − 115 MHz relative to the MOT cycling transition, when the two reso-

nances were overlapped on the monitor cavity. For the experiments in Chapter 4, we

used n = −4, for a detuning of −6.1 GHz.

The first-order AOM beam was spatially filtered by focusing through a 50 µm

pinhole. The beam was then collimated with a waist parameter of 1.5 mm and sent to

the vacuum chamber. This beam size was significantly larger than the size of the MOT

atom cloud (which was Gaussian, with σx = 0.15 mm), to ensure uniform illumination

of the atoms. The beam was retroreflected to form the optical lattice, using a mirror

mounted directly to a vacuum-chamber window flange. This mounting method made

the mirror position very rigid in the direction of the lattice, which was important be-

ICA
Input
lensInput

mirror
Ti:sapphire

crystal

Birefringent
filter

Brewster
tuning plates

Figure 3.11: Overhead view of the interior of the Ti:sapphire laser, showing a clear view

of the input light as it enters the crystal. Several of the frequency-stabilization compo-

nents are also visible here.
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cause the retroreflector position determined the spatial phase (and hence the positional

stability) of the lattice. We measured the phase stability of the optical lattice with a

Michelson interferometer setup, and found that the phase fluctuations over the time

scales of the experiments (2 ms) were 8% of the lattice period, with typical ringing fre-

quencies of around 600 Hz. This number is a generous upper bound, since the noise in

the measurement was probably dominated by the motion of the beamsplitter and refer-

ence mirror. These optics were mounted on a Newport model 45 damped post and were

hence not nearly as rigidly fixed in the direction of the standing wave. The dominant

source of the phase instability was vibration from the cooling water flowing through the

argon-ion laser, which was transmitted to the chamber and retroreflector through the op-

tical table. The short-term (i.e., over a single 2 ms interaction with the atoms) noise on

the intensity of the laser was measured to be 0.2% (rms) of the average intensity, with

longer-term (i.e., on the order of seconds) fluctuations at the same level. (Note that

the intrinsic noise of the New Focus model 1801 low-noise photodetector used for this

measurement was of the same order as the laser intensity noise, and was thus subtracted

to obtain the reported numbers.) The short-term fluctuations were dominated by an os-

cillation at 2.4 kHz, due to the dither of the thick etalon at the same frequency. The

laser power also drifted by several to many percent over the course of hours as the room

temperature drifted. For the experiments in Chapter 4, where the data were acquired

over a few days, we manually kept the power at approximately the same level. For the

experiments in Chapter 6, where the data were acquired in runs that took place contin-

uously over more than a week at a time, a photodiode after the spatial filter monitored

the laser intensity, and the computer scaled the control signals to compensate for laser

drifts at the beginning of each run (i.e., about every 15-30 minutes). Also, if the power

drifted by more than 1% from the initial power during a single data run, the entire run

was discarded. This procedure was important, as the laser intensity was significantly

different from the day to the night because of the difference in ambient temperature.
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3.4.3 Intensity Calibration

As the local laser intensity and detuning determined the optical potential experienced

by the atoms, it was important to have an accurate method for calibrating the laser in-

tensity. Here we will discuss the calibration method used for the experments in Chap-

ter 4. The beam power was measured using a Newport model 1825C power meter with

a model 818-SL semiconductor detector (and a model 883-SL attenuator). The power

meter had a NIST-traceable calibration, with a nominal absolute uncertainty of 2%. The

intensity used for the well-depth calculation was reduced by 8% from this measured

value to account for losses due to the vacuum chamber windows and other optics in the

beam line after the point where the power was measured.

The beam diameter was measured using both a knife-edge method and an imag-

ing method using a CCD camera. Both methods measured the beam profile approxi-

mately 2 m before the beam entered the chamber. The knife-edge method measured

only the beam profile as the beam propagated to the chamber, while the CCD camera

method measured the beam propagating both to and from the chamber by using beam

splitters on kinematic mounts to pick off a sample of the beam for the camera. The

knife-edge method involved scanning a knife edge across the beam using a micrometer-

driven translation stage. The detector placed behind the knife edge thus measured the

total intensity integrated over a half-plane. As the beam was quite Gaussian after the

spatial filter, the detected signal could be well fit to an error-function model to yield the

beam-waist parameter w0 in the horizontal and vertical directions. In the CCD camera

method, the picked-off beam passed through several attenuators and then into a Sony

model XC-77 CCD video camera. The camera output was digitized using a Comput-

erEyes/RT SCSI frame grabber by Digital Vision, Inc., and the beam intensity profile

was fit directly to a Gaussian model to obtain the beam-waist parameters. Some inter-

ference fringes due to reflections between the CCD surface and the protective window

were visible on the beam, but did not significantly affect the measurement. The CCD

images were valuable in ensuring that the beam spots were circular and nearly the same
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size before and after the chamber. Because the fitted spot sizes depended slightly on the

beam intensity in the CCD method, this method was used only to obtain the relative

spot sizes of the beam before and after the chamber, and the knife-edge measurement

was used to set the absolute scale of the measurements. The local intensity used for

well-depth calculations was also corrected for the specific widths of the MOT and laser

beam size. The correction factor is

ηMOT =
w2
0

4σ2x +w2
0

, (3.1)

where σx is the spatial standard deviation of the Gaussian MOT profile. This correc-

tion represents the average intensity experienced by the atoms relative to the intensity

experienced by an atom at the center of the beam. For typical values of σx = 0.15 mm

and w0 = 1.5 mm, this correction factor is about 96%. Combining these measurements

yielded an absolute potential amplitude that was correct to better than 10%. The os-

cillations in the diffusion rate D(K) as a function of the laser intensity, as described in

Chapter 4, provided an independent check of this calibration.

3.5 Vacuum System

The ultrahigh vacuum system, shown in Figs. 3.12 and 3.13, had as its main feature

a large 10-way stainless steel cross, custom-fabricated by HPS (a division of MKS In-

struments). The cross had six 4.25” ConFlat (CF) flanges, arranged along the three

major axes to accept the large MOT trapping beams. Along the equatorial plane of

the chamber, there were four 2.75” CF flanges between the four 4.25” flanges. Two

of these smaller flanges provided access for the optical lattice, a third provided ac-

cess for the main imaging system, and the fourth provided a path to the vacuum pump

and cesium source. The flanges providing optical access were covered with zero-length

(Kovar-sealed) glass viewports, which were antireflection (AR) coated by VLOC to have

≤ 0.25% reflection per surface. The glass cells used in previous experiments [199] have

the advantages of compact size and rapid magnetic field switching. The steel chamber
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used here, on the other hand, has the advantages of AR-coated windows, which largely

suppress interference fringes on the beams, and optical access for large beams, like the

MOT trapping and repumping beams. The chamber was mounted on a 5/8” thick alu-

minum plate (later changed to a G10 glass phenolic plate), which was in turn attached

to the table via four 6” long stainless steel posts. All the viewport flanges had additional

1/4-20 tapped holes for mounting optics directly to the chamber.

A 20 l/s ion pump (Varian model 919-0236) maintained the vacuum in the cham-

ber, and an HPS model 10000 5836 nude Bayard-Alpert ion gauge provided a means to

monitor the chamber pressure (in addition to the ion pump current). From the ion-

pump current, the vacuum pressure was around 8 × 10−8, although it is likely that the

actual pressure was substantially lower. With the proper magnetic bias field adjustment,

Cesium
ampule

Ion
pump

HH
coils

AH
coils

Figure 3.12: Photograph of the vacuum chamber. The rear section of the chamber is

visible here, including the ion pump and cesium ampule. The main (trapping) chamber

section is also visible, along with the anti-Helmholtz (AH) and Helmholtz (HH) coils.
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the atoms could be released from the MOT by turning off the anti-Helmholtz coils (but

not the optical molasses), and a substantial fraction could still be recaptured after 4 s by

turning on the anti-Helmholtz fields again. With the measurements in [245], a lifetime

of 4 s implies a pressure of 2 × 10−9 torr (assuming that cesium vapor dominated the

background pressure). The readings from the ion gauge and ion pump were probably

anomalously high due to cesium contamination.

We introduced cesium vapor into the chamber from a 1 g sample in a glass am-

pule, which was attached via a small CF flange (and a glass-metal seal) to a series pair

of all-metal bakeable UHV 1.5” diameter vacuum valves (Varian model 951-5027). The

inner valve was always fully open, and we installed it so that we could remove the cesium

ampule without breaking vacuum in the main chamber by sealing both valves and break-

Figure 3.13: Photograph of the main (trapping) section of the vacuum chamber. This

view looks into one of the large MOT trapping beam windows and the smaller optical

lattice input window. The anti-Helmholtz and Helmholtz coils are more visible in this

picture.
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ing the CF seal between them. The second valve was usually closed hand-tight, and

opened by a few turns to increase the cesium pressure in the main chamber whenever

necessary (typically only once per week). At first, though, we heated the cesium am-

pule to 100◦C for several days in order to build up enough vapor pressure to see trapped

atoms in theMOT. This procedure coated the surfaces of the main chamber with cesium

until it no longer acted as an effective pump for the cesium vapor. In an earlier attempt,

we used a UHV variable leak valve (Varian model 951-5106) to introduce the cesium,

but this valve did not have sufficient conductance to maintain a reasonable quantity of

cesium in the chamber, even with substantial heating of the ampule. By contrast, the

large-valve system required no temperature control of the cesium ampule.

To achieve good vacuum, we baked the chamber for three days at a maximum

temperature of 220◦C, with an additional day each for the gradual ramping up and down

of the temperature. During the bake, the ion pump was off, but the chamber was

pumped by a 70 l/s turbo pump through one of the all-metal bakeable valves. After

this main bake, the second valve and cesium ampule were installed, and this subsection

was separately baked for several days at a similar temperature while being pumped by

the turbo pump through a pinch-off tube. After the second bake, we broke the ampule’s

inner glass seal using the included breaker and a strong magnet. Then the seal to the

turbo pump was pinched off and we opened the valve to the main chamber.

3.5.1 Magnetic Field Control

The trapping action of a MOT relies on the presence of magnetic-field gradients in the

trapping region. In our experiment these fields were generated by a pair of coils in the

anti-Helmholtz configuration (where the coils form a mirror-image pair on either side of

the atoms, but the currents in the two coils flow in opposite directions). The circular

coils were 6.2” in diameter and each was wound from 202 turns of 24 gauge, Kapton-

coated copper magnet wire onto a water-cooled aluminum form. The layers of the coil

windings were fixed in place and further electrically insulated with clear fingernail pol-
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ish. After winding, the coils measured 8.7 Ω and 2mH each. The aluminum forms were

attached to the chamber by Lucite clamps that gripped the two vertical flanges, such

that the separation between the coils was about half their diameter. At a typical operat-

ing current of 3 A, the coils yielded a gradient of 11 G/cm along the symmetry axis of the

coils (and thus half this value perpendicular to this axis, which follows from cylindrical

symmetry and ∇ · B = 0). Although the coils generated 80 W of heat, they remained

cold to the touch with 10◦C water flowing through the forms at 10 gallons/hour.

The current through these coils was provided by two push-pull pairs of LM12

(National Semiconductor) high-current operational amplifiers, which were powered by

a massive Sorenson DCR40-35A single-ended power supply. This circuit was capable

of switching off the 3 A of current in the coils in 100 µs, but due to eddy currents

in the chamber and the coil forms, the major part of the magnetic field damped away

exponentially with a much longer time constant of 3 ms. The residual magnetic fields

were not of substantial concern for the experiments in Chapter 4. However, the Raman

velocity selection technique described in Chapter 5 is very sensitive to magnetic fields,

and with this setup we could detect changing magnetic fields even 350ms after the coil

currents were extinguished. This time scale was much longer than expected for eddy

currents in the chamber or coil forms, and even persisted when the aluminum chamber

mounting plate was replaced with a phenolic plate. Thus, this long field decay was likely

due to the presence of ferromagnetic Kovar in the chamber viewports.

The chamber was also enclosed within three pairs of Helmholtz coils, which

allowed the magnetic field at the center of the chamber to be nulled out. Two of these

coil pairs also provided the bias field for the optical pumping described in Chapter 5.

These coils had a square profile, measured about 15” per side, and were separated by

about 8” (with slight variations among the pairs so that they fit together properly and

so that the coil spacings were 0.54 times the coil widths [249]). Each of these coils

had 44 turns of the same wire used for the anti-Helmholtz coils, with about 6 Ω of

resistance per coil. These coil pairs produced about 2 G/A of magnetic field along their
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respective axes. For typical operating conditions, where around 0.8 G was needed in the

vertical direction to compensate for the magnetic field of the Earth, and a combined 1.5

G was pulsed on in the horizontal direction (using two coil pairs) for optical pumping, no

special cooling was needed for these coils. These coils were driven by circuits that were

similar to the anti-Helmholtz drivers, but were based on the Burr-Brown OPA2544T

dual high-current op-amp, with the two sections operating in push-pull mode on a series

pair of coils. The push-pull arrangement permitted bidirectional operation of all the

coils, even though all the drivers (including the anti-Helmholtz drivers) were driven

from a common single-ended power supply.

3.6 Imaging System

All measurements of the atoms in our experiments were performed by a CCD camera

(Princeton Instruments TE/CCD-5122TK/1UV). The CCD chip was an array of 512×

512 pixels, with each pixel approximately a 20 µm square. For low-noise operation, the

CCD was chilled to around −30◦C. The light was imaged by a Nikon 105 mm f/2.8 D

macro lens, which reduced the image in the plane of the atoms by 1:1.8. The camera

viewed the atoms through one of the smaller viewports in the chamber, such that the

camera view was orthogonal to the optical lattice.

The action of the camera shutter was quite audible, and we designed the camera

mount to minimize the transmission of vibration to the lasers and other components

on the optical table. The camera was attached via a short post to an aluminum plate,

which was sandwiched between two sheets of 1/8” thick Sorbothane rubber. This stack

was clamped between an aluminum base plate and a third aluminum plate, so that the

camera was vibrationally isolated from the base. The base plate was then mounted

on a Newport model 45 vibration-damping post. The post was mounted on a large

aluminum base plate that rested on the table through another intermediate layer of

Sorbothane, and was clamped down with clamps padded with more rubber. With this

setup, the shutter action vibrations were visible on the laser lock signals, but did not
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have a significant effect on the measurements.

The camera images were transferred to the Power Macintosh 7100 controlling

computer via a Princeton ST-138 camera controller connected to a NuBus-style com-

puter interface card. The data transfer took several seconds for large images, so for

real-time alignment we used a separate and much less expensive Ikegami camera con-

nected to a small CRT monitor. This camera viewed the MOT through the side edge of

one of the MOT beam windows, so it also provided an independent view of the MOT.

3.7 Measurement Technique

With these experimental tools in hand, we can proceed with a discussion of the mea-

surement methods for the data presented in the next chapter. The basic experimental

sequence for these experiments is shown in Fig. 3.14. The sequence began by preparing

a sample of cesium atoms by loading the MOT from ambient vapor. This trapping phase

lasted for about 5 s. The atoms were cooled further by reducing the intensity of the trap-

ping light to about 40% of its maximum value and increasing the detuning to 55 MHz

(from the 15MHz used during the initial trapping phase). This procedure resulted in

an atomic sample that was approximately Gaussian in position and momentum, with

typical sizes of σx = 0.15 mm and σp/2�kL = 4 (corresponding to a one-dimensional

temperature of 12 µK).

After this initial preparation, the trapping light and anti-Helmholtz fields were

extinguished, and the atoms were exposed to the time-dependent optical lattice (in

the form of a periodic pulse train, in Chapter 4). It was during this stage that the

interactions of physical interest to us occured. Since we tracked the evolution of the

atoms as they were exposed to the optical lattice, this stage lasted from zero to about

2 ms. This time was limited by both the capabilities of the control electronics as well

as the requirement that the atoms not fall significantly compared to the 1.5 mm waist

of the lattice during this time. During this interaction, the optical lattice modified

the atomic momentum distribution, typically heating the center-of-mass motion of the
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1. Cool and trap atoms
in MOT
(5 s)

3. Free expansion
in the dark
(~15 ms)

4. Freezing molasses
and imaging
(10 ms)

2. Interaction with
optical lattice
(~1 ms)

Figure 3.14: Schematic picture of the experimental sequence for the experiments in

Chapter 4. (Graphics rendered by W. H. Oskay.)
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atoms through the optical forces.

The next stage in the experimental sequence was the measurement of the

atomic momenta. All laser light was extinguished, and the atoms were allowed to drift in

the dark for 15 ms (or 20ms for the experiments in Chapter 6; these quoted drift times

include the variable lattice interaction times, so the time spent in the dark depended

on the duration of the lattice interaction). During this time, the typical atom moved a

distance that was large compared to the initial diameter of the cloud. Thus, assuming

that the initial sample was a point source, the displacements of the atoms after the drift

times was proportional to their corresponding momenta, and so the spatial distribution

of the atoms had the same form as the momentum distribution. (More carefully, the fi-

nal spatial distribution had the form of the momentum distribution convolved with the

initial spatial distribution). To detect the momentum distribution, the atoms were illu-

minated by the MOT trapping light, but without the anti-Helmholtz magnetic fields. In

this configuration, the cooling effect of these optical-molasses beams “froze” the atoms

in place, and the atomic fluorescence was recorded on the CCD camera. The imaging

time was kept relatively short (10 ms for the experiments of Chapter 4, 20 ms for Chap-

ter 6) so that the atoms did not move significantly during the measurement. To avoid

an effectively nonuniform exposure of the CCD as a result of the shutter opening (5

ms) and closing (12 ms) times, we pulsed the freezing molasses light on only when the

shutter was fully open.

The two-dimensional intensity distributions from the camera were therefore

a direct measurement of the two-dimensional momentum distributions of the atoms.

Since we only care about the atomic momenta in the direction of the optical standing

wave, we integrated over the transverse direction to obtain one-dimensional distribu-

tions. An example of such a distribution is shown in Fig. 3.15. This measurement

is the simplest type of experiment, where no optical-lattice interaction is applied to

the atoms, and hence constitutes a measurement of the momentum distribution of the

MOT (which is the initial condition for the experiments in Chapter 4). The momentum
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distribution in the trap was mostly Gaussian, with broadened tails. Similar distributions

have been observed by other groups, especially for strong magnetic-field gradients (e.g.,

[250, 251]). A good model for this momentum distribution is an incoherent sum of a

Gaussian and an exponential distribution:

ηg√
2πσp

exp
(
− p

2

2σ2p

)
+
ηe
2ξp

exp
(
−|p|
ξp

)
. (3.2)

The parameters for this model were determined from a best fit; the widths of the com-

ponents are σp/2�kL = 3.9 and ξp/2�kL = 13.0, and the relative weights are ηg = 82%

and ηe = 18%. The measured distribution is plotted in Fig. 3.15 along with the best-fit

function (3.2). To characterize the temperature of the atoms, we normally used a sim-

ple Gaussian model. When fitted to the same atomic distribution, this model accounts

for 96% of the atomic population, with the remaining 4% augmenting the tails of the

momentum profile. To minimize the convolution effects of the MOT cloud on the tem-

perature measurements, we also measured the nearly Gaussian momentum distribution
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Figure 3.15: Plot of the momentum distribution in the MOT (solid line), with model

distribution (3.2) (dotted line). Most of the atoms are in the main Gaussian component,

while a smaller fraction is contained in the broad, non-Gaussian tails. This distribution

corresponds to the initial conditions of our kicked-rotor experiments.



99

at several drift times. We could then extract the corresponding true σp by fitting Gaus-

sian lineshapes to measurements at each drift time, and fitting these Gaussian widths

to the model

σx(tdrift) =
√
(σx0) 2 + (σptdrift/m)2 , (3.3)

where σx(tdrift) is the measured spatial width parameter of the expanded MOT, σx0 is

the spatial width parameter of the initial MOT, and tdrift is the drift time. This model

is the exact convolution if the MOT spatial and momentum distributions are Gaussian.

3.8 Control Electronics

We give here a brief overview of the control electronics, and a more thorough discus-

sion will be published separately [218]. For the experiments in Chapter 4, the entire

experiment was controlled by a single Power Macintosh 7100/80 computer. All data ac-

quisition and control software was programmed in LabVIEW. As mentioned above, the

computer acquired the camera images via a NuBus interface card. The computer also

used a National Instruments NB-MIO-16L-9 multipurpose I/O board. Although this

board included many input and output functions, the functionality of this board was

severely limited by the fact that its various sections could not be easily synchronized.

This board was only used as a master trigger for the experiment and for control of the

anti-Helmholtz fields, but precision timing was delegated to several external devices,

including a Stanford Research Systems (SRS) DG535 timing/pulse generator and two

SRS DS345 arbitrary waveform synthesizers. The computer programmed these timing

devices through a National Instruments GPIB interface. The timing of various events

was controlled with the DG535, while the optical lattice and MOT trapping beam in-

tensities were controlled by the two DS345 synthesizers. To ensure precise timing,

these three devices were slaved to a common frequency reference, and later all timing

devices were slaved to a rubidium clock (LPRO model by EFRATOM) for extremely

high absolute accuracy and stability.

For the more complex experiments in Chapter 6, the acquisition and control
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setup was upgraded considerably. Most of the control and data processing was handled

by a fast Power Macintosh G4 (“Sawtooth”). However, because Princeton Instruments

(now Roper Scientific) does not provide a PCI interface card for our camera controller,

the old 7100 computer still acquired the camera images. The two LabVIEW processes

on the two computers communicated via TCP. The more complex optical lattice inten-

sity waveform was moved to an Agilent 33250A waveform synthesizer which has much

better temporal resolution and waveform memory (65, 535 samples with as fast as a 5

ns sampling rate, compared to the 16, 299 sample, 25 ns rate of the DS345). The new

computer also handled many timing functions through a PCI-DIO-32HS digital inter-

face by National Instruments, which outputs up to 32 channels of TTL data through

50 Ω drivers (at a clock rate of 1.25 MHz, in our setup). Other timing functions that

required voltage levels other than TTL were handled by two DG535 units, and more

complicated waveforms were generated by five DS345 synthesizers.



Chapter 4

Localization and Decoherence in the Kicked Rotor

4.1 Overview

Now we come to the first set of experiments discussed in this dissertation. In these

studies, we focus on a realization of the kicked-rotor problem, formed by periodically

pulsing on the optical standing wave. We will be concerned with the global (momen-

tum) transport in the kicked rotor, since the classical and quantum transport are quite

dramatically different due to dynamical localization. As we pointed out in Chapter 1,

the difference between the quantum and classical behaviors is an apparent problem for

correspondence. The goal of the research in this chapter is to directly address quantum–

classical correspondence in the context of the kicked rotor. We will see that decoherence

due to spontaneous emission or externally-imposed noise can destroy dynamical local-

ization. Furthermore, we show that it is possible to obtain quantitative correspondence

(at the global level of distributions and expectation values) in the presence of noise,

even in a manifestly quantum regime.

The material presented in this chapter spans a number of previous publications

from our group. The initial work on external noise and spontaneous emission effects

was presented in [204]. The original confirmation of Shepelyansky’s quantum scaling

and the observation of a nonexponential late-time distribution were both presented in

[252]. The effects of the finite pulses in the experiment were characterized in [202].

This earlier material is reviewed in [203], in more detail than we provide here. Later, we

showed that we could observe ballistic transport at quantum resonance [209], even with-

out subrecoil velocity selection. The quantitative studies of noise effects on quantum

101
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localization and the return to the classical limit were presented in [207, 208]. Finally,

an experimental test of a universal quantum diffusion theory was presented in [214].

4.2 Rescaling

The atom-optics realization of the kicked rotor is described by the Hamiltonian

H(x, p, t) =
p2

2m
+ V0 cos(2kLx)

∑
n

F (t− nT ) . (4.1)

Here, T is the kick period, and F (t) is a pulse function of unit height and duration

tp � T . Before proceeding, we will transform to scaled units to simplify our discussion,

as we did for the pendulum in Chapter 1. As before, the spatial coordinate has a natural

scaling,

x′ := 2kLx . (4.2)

This time, however, there is a natural time scale for the problem, which defines the

scaling of the time coordinate,

t′ := t/T . (4.3)

The corresponding scaling of the pulse is given by

f(t′) := F (t)/η , (4.4)

where we have defined the pulse integral

η := T−1
∫ ∞
−∞
F (t) dt ∝ tp, (4.5)

so that the scaled pulse is normalized to unity (i.e.,
∫∞
−∞ f(t) dt = 1). If we define the

constant

k̄ := 8ωrT , (4.6)

then the time scaling here is different from the pendulum time scaling by precisely this

factor. This difference suggests that we should change the momentum scaling by the

same factor,

p′ :=
k̄

2�kL
p . (4.7)
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Now the scaled coordinates obey the commutation relation,

[x′, p′] = ik̄ , (4.8)

and thus we can interpret k̄ as a scaled Planck constant, which can be “tuned” by varying

the period T . More concretely, this parameter measures the action scale of the system

in physical units compared to �. We can then use the energy transformation H ′ :=

(k̄/�)TH , and defining the stochasticity parameter as

K :=
k̄T

�
ηV0 , (4.9)

the Hamiltonian in scaled units takes the form

H(x, p, t) =
p2

2
+K cosx

∑
n

f(t− n), (4.10)

after dropping the primes. In this way we have reduced the classical system to a single

parameter (K) and the quantum system to two parameters (K and k̄). Note that in

these units, the constant k̄ also represents the quantization scale for momentum trans-

fer, rather than unity as in the pendulum units or 2�kL in unscaled units.

4.3 Standard Map

In the limit of arbitrarily short pulses, the pulse function f(t) is replaced by the Dirac

delta function δ(t),

H(x, p, t) =
p2

2
+K cosx

∑
n

δ(t− n) , (4.11)

and this limit of the problem is commonly termed the “δ-kicked rotor.” This limit is

particularly convenient because the equations of motion can be reduced to a simple

discrete map. From the form of the Hamiltonian (4.11), we note that during the kick,

the potential term dominates the kinetic term. Between kicks, the potential term is

zero, and the motion is that of a free rotor. Using these observations, we can integrate

the equations of motion over one temporal period of the Hamiltonian.
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Differentiating (4.11), Hamilton’s equations of motion become

∂tp = −∂H
∂x

= K sinx
∞∑

n=−∞
δ(t− nT )

∂tx =
∂H

∂p
= p .

(4.12)

We will integrate Eqs. (4.12) to construct a map for x and p just before the nth kick.

Letting ε be a small, positive number, we integrate the equation for p,∫ tn+1−ε

tn−ε
∂tp(t) dt =

∫ tn+1−ε

tn−ε
K sinx

∑
n

δ(t− n) dt , (4.13)

where tn = n is the time of the nth kick. This equation then becomes

p(tn+1 − ε) − p(tn − ε) = K sinx . (4.14)

Similarly, we integrate the equation for x,

∫ tn+1−ε

tn−ε
∂tx(t) dt =

∫ tn+1−ε

tn−ε
p dt , (4.15)

which becomes

x(tn+1 − ε) − x(tn − ε) = ε p(tn − ε) + (1− ε) p(tn+1 − ε) . (4.16)

Then, letting ε → 0 and defining xn and pn to be the values of x and p just before the

nth kick, we obtain the mapping

pn+1 = pn +K sinxn
xn+1 = xn + pn+1 .

(4.17)

These equations, which constitute a one-parameter family of mappings parameterized

by the stochasticity parameter K, are known as the standard map (or Chirikov-Taylor

map), so named because of its broad importance in the study of Hamiltonian chaos.

The significance of this widely studied map is due to both its simplicity, which makes it

amenable to both analytical and numerical study, and the fact that many systems can be

locally approximated by the standard map [27].
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A number of standard-map phase plots are shown in Appendix B. The phase

space for the standard map is clearly invariant under a 2π translation in x, because of

the corresponding invariance of the mapping itself, and so x is usually taken to be within

the interval [0, 2π). What is perhaps less obvious is that the phase-space structure is also

invariant under a 2π translation in p, as well. This point is more easily recognized from

the Hamiltonian of the δ-kicked rotor (for which the standard-map phase space is a

Poincaré section). Using a form of the Poisson sum rule,

∞∑
n=−∞

δ(t− n) =
∞∑

n=−∞
cos(2πnt) , (4.18)

we can rewrite the δ-kicked rotor Hamiltonian as

H(x, p, t) =
p2

2
+K cos x

∞∑
n=−∞

cos(2πnt)

=
p2

2
+

∞∑
n=−∞

K cos(x− 2πnt) .
(4.19)

From this form of the Hamiltonian, it is apparent that the δ-pulsed potential can be

regarded as a superposition of an infinite number of unmodulated pendulum potentials

moving with momentum 2πn for every integer n. The Hamiltonian is therefore invari-

ant under boosts of 2πn in momentum, so the phase space is 2π-periodic in both x

and p. Each of these pendulum terms is associated with a primary nonlinear resonance

in the phase space, located at (x, p) = (π, 2πn), and the interactions between these

resonances result in chaos and rich structure in phase space.

4.4 Classical Transport

We will now consider the global behavior in the standard map. In particular, we will

consider the transport in the limit of large K, where the phase space is predominantly

chaotic (which operationally meansK � 5). Also in this limit, there are no Kolmogorov-

Arnol’d-Moser (KAM) surfaces that span the phase space, dividing the phase space in

the momentum direction and preventing chaotic transport to arbitrarily large momenta
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(this is true for any K above the Greene number, KG ≈ 0.971635 [253]). Broadly

speaking, invariant surfaces (KAM surfaces, which are traceable to invariant surfaces in

the integrable limit, and islands of stability) confine trajectories, while chaotic trajec-

tories are free to ergodically wander throughout the chaotic region. In the next section

we will find that the chaotic motion can be thought of as being diffusive (like a random

walk), although the presence of small but nevertheless important islands of stability

complicate this diffusion picture.

4.4.1 Diffusion and Correlations

Focusing on the momentum transport in the standard map, we use the first equation in

the standard map (4.17) to calculate the kinetic energy of a trajectory ensemble after n

iterations:

En :=
〈p2n〉
2

=
1
2

n−1∑
m,m′=0

Cm−m′ .
(4.20)

Here, the correlation functions Cm are defined as

Cm−m′ := 〈K sinxmK sinxm′〉 . (4.21)

(A similar discussion along these lines can be found in [105], but with a slightly different

definition for the correlations.) The angle brackets here denote an average over the

initial ensemble. For the purposes of the present analysis, we can take this average to be

uniform over the unit cell in phase space, which is appropriate for the initial distribution

of MOT atoms for the experimental parameters (for which the distribution is broad in

both x and p compared to the unit cell size). The correlations also obviously depend

only on the differencem−m′, as there is no explicit time dependence in the standard

map.

The sum in Eq. (4.20) can be straightforwardly evaluated if one makes the ap-

proximation that the coordinate xn is uniform and uncorrelated, as one might expect for
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very large K when the phase space is almost entirely chaotic. Doing so allows one to

ignore the off-diagonal terms in the sum and gives the result

En =
C0
2
n =

K2

4
n . (4.22)

The energy growth is hence diffusive (linear in time), with diffusion rate Dql(K) =

K2/4, which is known as the quasilinear diffusion rate. This quasilinear (random-

phase) approximation is equivalent to assuming that the motion is a random walk in

momentum, and thus the momentum distribution is asymptotically Gaussian with a

width ∼
√
n.

The random-phase approximation is only valid in the limit of arbitrarily large

K, however, and for finite K the higher-order correlations cannot always be neglected,

even for trajectories within the chaotic region of phase space. Nonuniformities in the

chaotic region, especially near the borders of stability islands, can lead to nonzero corre-

lations, and thus to deviations of the diffusion rate from the quasilinear value. A more

general expression for the (time-dependent) diffusion rate in terms of the higher-order

correlations is

Dn := En+1 −En =
1
2

n∑
m=−n

Cm . (4.23)

These corrections to the diffusion rate were treated analytically in [254, 255], where

the series (4.23) was shown to be an asymptotic expansion in powers of Bessel functions

ofK. The result from [255] is

D(K) =
K2

2

(
1
2
− J2(K)− J 2

1 (K) + J
2
2 (K) + J

2
3 (K)

)
(4.24)

to second order in the Bessel functions (we defer the derivation of these results to

Section 4.8). This expression represents the rateDn of energy diffusion for long times n

and large values ofK; the higher-order terms in the expansion are assumed at this point

to have only a small contribution, since they represent higher powers of 1/
√
K. In this

expression, it is often convenient to neglect J 2
3 (K) − J 2

1 (K), which is O(K
−2), since

for large K this difference is much smaller than J 2
2 (K), which is O(K−1); however,
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these terms will be important when generalizing this result to account for amplitude

noise below. This result shows that D(K) oscillates about the quasilinear value, where

the corrections become small compared to the quasilinear value as K becomes large.

4.4.2 Accelerator Modes

The diffusion rate expression in Eq. (4.24) is plotted in Fig. 4.1 along with the diffusion

rate calculated in a simulation. The agreement is generally good, with the exception of

the peaks in the diffusion curve, where the simulated diffusion rate greatly exceeds the

analytical prediction. This discrepancy stems from the fact that we have so far assumed

that the chaos causes the correlation series (4.23) to drop off rapidly (i.e., exponentially).

0

100

200

0 10 20 30

D
(K

)

K

Figure 4.1: Dependence of the rate of energy diffusionD on the stochasticity parameter.

The analytical diffusion expression [Eq. (4.24), dotted line] shows a significant oscilla-

tory departure from the quasilinear prediction (dashed line). The simulated diffusion

rate (solid line) is computed assuming an initial condition of 105 particles distributed
uniformly over a unit cell in phase space, and is averaged over 1000 iterations of the

standard map. The simulation agrees with Eq. (4.24) except at the peaks of the diffu-

sion curve, where the diffusion is dramatically enhanced by the influence of accelerator

modes.
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However, the presence of small, stable islands (which are present for any value ofK) can

make the longer time correlations important, so that the correlation series decays slowly

(i.e., like a power law [256, 257]), and as a result this series may not even rigorously

converge.

The stable structures that cause the large deviations in Fig. 4.1 are the accelera-

tor modes [27, 258, 259]. These structures are different from the usual stability islands

in that they are boosted by a constant amount in momentum on each iteration. Themain

family of accelerator modes occur in the stability windows (2πj) < K <
√
(2πj)2+ 16

(for integer j), where the corresponding accelerator mode hops monotonically by 2πj in

momentum per iteration [27]. These intervals are precisely the locations of the strong

deviations in Fig. 4.1; note that the j = 0 case simply corresponds to the primary reso-

nances, as we discussed in the context of Eq. (4.19), whereas for j > 0 the accelerator

modes are born by tangent bifurcations. From the inversion-symmetry properties of the

standard map (i.e., invariance under the combined transformation p → −p, x → −x),

we can see that the accelerator modes occur in pairs, which “stream” in opposite senses.

The accelerator modes are obviously a peculiarity of the standard map, a result of the

periodicity of the phase space in the momentum direction. Other systems, such as the

experimental realization of the kicked rotor (which uses finite, not δ-function, kicks)

can still exhibit quasiaccelerator modes, which behave like accelerator modes over a

bounded region in phase space [15].

The behavior of the trajectories trapped within stable islands and accelerator

modes is clearly different in nature from that of chaotic trajectories. However, these

coherent phase-space structures can still have a strong influence over the behavior of

chaotic trajectories. The boundaries of the islands, where the stable regions merge into

the surrounding chaotic sea, are complicated and fractal in nature. This structure causes

the island boundaries to be “sticky” in the sense that chaotic trajectories can become

trapped for some finite time in the boundary layer. As the chaotic trajectories wan-

der throughout the phase space, they will eventually wander close enough to any island
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Figure 4.2: Upper graph: plot of the iterates pn for a standard-map trajectory in the pres-
ence of accelerator modes, showing Lévy-flight behavior. The stochasticity parameter

is K = 6.52, and the initial condition is (x0, p0) = (3, 3.5). The Lévy flights are ap-
parent as sudden jumps in momentum as a result of many successive steps in the same

momentum direction. Lower graph: plot of the iterates pn for a standard-map trajectory
showing normal diffusive behavior. The stochasticity parameter is K = 9.5, and the
initial condition is (x0, p0) = (3, 3.5).
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to become trapped. The self-similar structure of the boundary causes these trapping

times to have a power-law distribution [256], and the resulting dynamics are character-

ized by Lévy-flight behavior, rather than simple diffusion [259]. The regular stability

islands tend to trap trajectories at a fixed momentum, leading to reduced momentum

transport, whereas the accelerator modes lead to streaming (with many correlated mo-

mentum steps), and therefore to enhanced momentum transport. This subdiffusive or

superdiffusive behavior due to island structures is referred to as anomalous diffusion

[257, 259–262]. The momentum distribution in this regime has asymptotically power-

law tails, rather than Gaussian tails, and the kinetic energy scales as E(t) ∼ tµ, where

the transport exponent µ �= 1 for anomalous diffusion. The Lévy flights in a standard-

map trajectory are apparent in Fig. 4.2, especially compared to a diffusive trajectory,

shown also in this figure.

As the transport in the standard map is not strictly diffusive, the proper frame-

work for the global dynamics is fractional kinetics [263–265]. However, since the stable

islands in phase space are typically small for large K (the areas of the islands are asymp-

totically of the order K−2 [27]), it may take many kicks before the islands cause large

deviations from diffusive behavior. Hence, for the time scales observed in our experi-

ments (up to 80 kicks), it is appropriate to describe the classical dynamics as diffusive as

long as large accelerator modes are not present. Operationally, Eq. (4.24) is an excellent

approximation away from the main family of accelerator modes.

4.4.3 External Noise

The transport that we have studied is heavily influenced by correlations, and we might

expect that noise will therefore also have substantial effects on the global dynamics.

One type of decohering interaction that we will study more in Section 4.5.4 is sponta-

neous emission. To model the effects of spontaneous emission in the standard map, we

could simply consider a fluctuating momentum perturbation that models the random

momentum recoil of the atom in response to the photon scattering. We can compare
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this situation qualitatively to the results of Ref. [266] (see also [15]), which considers

the generalized (noisy) mapping

pn+1 = pn +K sinxn + δpn
qn+1 = qn + pn+1 + δxn ,

(4.25)

where δpn and δxn are time-dependent random variables. In the case where δpn and

δxn are chosen from a normal distribution, the diffusion rate from Eq. (4.24) becomes

D(K) =
K2 + 2ρ2

4
+
K2

2

[
− J2(K)e−(σ

2+ρ2/2)

− J 2
1 (K)e

−(σ2+ρ2) + J 2
2 (K)e

−(2σ2+ρ2) + J 2
3 (K)e

−(3σ2+ρ2)
]
,

(4.26)

where ρ2 is the variance of δpn, and σ
2 is the variance of δxn. The noise therefore

affects the diffusion by exponentially damping the higher-order correlations, and the

momentum perturbation also gives a direct contribution to the quasilinear term.

For the quantitative comparison of quantum and classical dynamics of the kicked

rotor in Section 4.6, we used amplitude noise, where the value of K is randomly varied

from kick to kick. This interaction has the advantage of being easy to apply and quantify

compared to other decohering interactions such as spontaneous emission. We can also

treat the effects of this noise on the classical correlations analytically, as we now discuss

(again, some of the more gruesome details are left to Section 4.8). The standard map

including amplitude noise is

pn+1 = pn + (K + δKn) sinxn
qn+1 = qn + pn+1 ,

(4.27)

where δKn is a random deviation for the nth kick, distributed according to P (δK), with

zero mean. The noise again modifies the correlations, and the generalization of (4.21) is

Cm−m′ =
∫
d(δKm) · · ·d(δKm′)P (δKm) · · ·P (δKm′)

×〈(K + δKm) sinxm(K + δKm′) sinxm′〉,
(4.28)

where there are |m−m′|+1 integrals over the kick probability distribution, because the

coordinate at the later time depends on all the kicks after the earlier time. As we can see



113

from Section 4.8, each factor ofK (the two factors ofK and several factors of Jn(K)) in

Eq. (4.24) enters as an independent random variable, so that the integration in (4.28)

amounts to averaging over each factor independently. The resulting generalization of

(4.24) is

D(K) =
K2 + Var(δK)

4
+
K2

2
(
−J2(K)− J 2

1 (K) + J 2
2 (K) + J 2

3 (K)
)
. (4.29)

In this equation, Var(δK) denotes the variance of P (δK), and

Jn(K) :=
∫ ∞
−∞
P (δK)Jn(K + δK)d(δK). (4.30)

This expression makes it immediately clear how amplitude noise affects the diffusion

rate: the integral in Eq. (4.30) is analogous to a convolution of the Bessel functions with

the noise distribution. As the noise level is increased, the Bessel functions are smoothed

out, and the correlations are effectively destroyed. This is especially true for long-term

correlations, and indeed anomalous diffusion is suppressed in the presence of noise. At

the same time, there is an increase in the quasilinear diffusion component, because the

fluctuating kick strength leads to a fluctuating momentum perturbation, but this effect

is generally small in comparison to the destruction of the correlations.

In the experiments, we considered exclusively the case of amplitude noise with

a uniform probability distribution,

P (δK) =
{
1/δKp−p, δK ∈ (−δKp−p/2, δKp−p/2)

0 elsewhere,
(4.31)

where δKp−p is the peak-to-peak deviation of the kick strength. When we quote the

noise level used in our experiments, we are quoting the normalized peak-to-peak devia-

tion δKp−p/K. For this noise, the variance, which characterized the contribution to the

quasilinear diffusion, is Var(δK) = (δKp−p)2/12, and from Eq. (4.30), the correlation

contributions to the diffusion in (4.24) are simply convolved with a “box” window. For

illustration, the function (4.29) is plotted for several different levels of amplitude noise

in Fig. 4.3. Notice that for the 100% and 200% noise levels, the correlations are essen-

tially destroyed, so that these noise levels cannot be considered perturbative; however,
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these noise levels are still small in the sense that their contribution to the quasilinear

diffusion rate is significantly smaller than the zero-noise component.

4.4.4 Finite-Pulse Effects

In a real experiment, we obviously cannot realize exact δ-kicks, but we can use short

laser pulses to work near this limit. The standard map is a valid model of the finite-

pulse kicked rotor if the motion of the atom is negligible throughout the duration of

the pulse, because this situation mimics the strobe-like nature of the δ-function pulses.

This observation implies that the δ-kick approximation is valid within a bounded interval

in momentum about p = 0. We can obtain a crude estimate for the momentum at which

the δ-kick approximation breaks down by considering an atom moving with a velocity

such that it travels over one period of the optical lattice over the duration tp of the

pulse. The momentum transferred to the atom is approximately zero, and thus the
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Figure 4.3: Plot of the diffusion expression (4.29) for several levels of amplitude noise

(with uniformly-distributed statistics): no noise (solid line), 50% noise (dashed line),

100% noise (dotted line), and 200% noise (dot-dashed line). The oscillations, which

represent short-term correlations, are smoothed out by the noise.
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momentum pb for this “boundary” is

pb
2�kL

=
mλ2

8π�tp
, (4.32)

where all quantities are in physical units. The dependence of this boundary on the

atomic mass m and the lattice wavelength λ motivated the use of a cesium-based ap-

paratus for these experiments over the previous sodium-based apparatus, in order to

realize an increase in pb/2�kL by a factor of 12 for fixed tp.

We can make this momentum boundary effect due to finite pulses more precise

by reconsidering the form (4.19) for the kicked-rotor Hamiltonian. We can write the

Figure 4.4: Phase-space plots for the kicked rotor with K = 10.5 in the cases of (a)
δ-kicks, (b) square pulses with pulse width tp/T = 0.014, and (c) square pulses with
tp/T = 0.049. Case (b) is similar to the pulses used in the experiments in this chapter.
The effect of the finite pulses is to introduce KAM surfaces at large momenta in the

otherwise chaotic phase space.
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kicked-rotor Hamiltonian (4.10) for finite pulses as

H(x, p, t) =
p2

2
+K cos x

∞∑
j=−∞

cje
−i2πjt , (4.33)

where the Fourier coefficient cj is given by

cj =
∫ 1

0

∑
n

f(t− n)ei2πjt dt . (4.34)

This Hamiltonian can in turn be rewritten as

H(x, p, t) =
p2

2
+K

∞∑
j=−∞

|cj| cos(x− 2πjt+ φj) , (4.35)

where we have defined the phases of the coefficients by cj = |cj| exp(iφj), and we have

used the fact that cj = c∗−j . Also, from the definition of f(t), the coefficient c0 of the

stationary term is unity. In the case of δ-kicks, we saw that cj = 1 holds true for all the

coefficients. However, for finite pulses the Fourier weights drop off with increasing j,

so that the primary resonances are attenuated at large momentum. Larger pulse widths

imply a narrower spectrum, and hence a boundary at lower momentum, as we discovered

using the simpler estimate above.

The effects of finite pulses are illustrated in Fig. 4.4, which shows the phase

space for a δ-kicked rotor compared with two phase spaces corresponding to kicks with

square pulse profiles. For the case of square pulses, we can define a momentum-depen-

dent effective stochasticity parameter based on the Fourier transform argument as

Keff(p) = Ksinc
(
tpp

2

)
, (4.36)

where sinc(x) = sin(x)/x, and p and tp are scaled variables. This sinc profile is espe-

cially apparent in Fig. 4.4(c), where the phase space becomes stable asKeff drops below

∼ 1 (recall that the “stochasticity border” for the kicked rotor occurs near K = 1), be-

comes unstable again as it drops below ∼ −1, and so on. The phase space in Fig. 4.4(b)

corresponds closely to the situation in our experiments, and from this plot it is apparent

that the momentum boundary occurs well outside the range of |p/2�kL| < 80 that we

measure experimentally. More details about this momentum boundary and its effects

on quantum transport can be found in [202, 204].
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4.5 Quantum Transport

Now we turn to the subject of quantum transport in the kicked rotor. We introduced in

Chapter 1 the dynamical localization phenomenon, where the quantum transport is in

sharp contrast with the diffusive classical transport. The main symptom of dynamical

localization is that momentum transport is frozen after the break time tB. The underly-

ing discrete-spectrum nature of the quantum dynamics also makes the quantum system

numerically reversible, and hence manifestly nonchaotic, as we have also seen. In this

section, we will examine several aspects of quantum transport in the kicked rotor, in-

cluding some of the effects of noise on the quantum transport, and relate quantum and

classical transport via their respective correlations.

4.5.1 Quantum Mapping

The equation of motion for the quantum δ-kicked rotor is just the Schrödinger equation,

ik̄∂t|ψ〉 = H |ψ〉 , (4.37)

where the Hamiltonian is given by Eq. (4.11). To derive a mapping for the quan-

tum evolution, we start with the time-evolution operator U(t, t0) (so that |ψ(t)〉 =

U(t, t0)|ψ(t0)〉) for a system with a time-dependent Hamiltonian [267],

U(t, t0) = T exp
[
− i

�

∫ t

t0

H(t′) dt′
]
, (4.38)

where T is the chronological (time-ordering) operator, which is necessary when H(t)

does not commute with itself at different times. Using a procedure similar to that used

in the derivation of the classical standard map, we can write the kicked-rotor evolution

operator as

U(n+ 1, n) = exp
(
−ip

2

2k̄

)
exp

(
−iK cos x

k̄

)
, (4.39)

where the “kick” operator acts on the state vector first, followed by the “drift” operator.

The quantummapping in the form (4.39) is particularly suitable for calculations,

because each component of the operator is diagonal in either the x or p representation,
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and thus is simple to apply to the wave function after appropriate Fourier transforms.

Alternately, we can express the quantum mapping entirely in the momentum basis by

using the generating function for the Bessel functions Jn(x), with the result

ψn+1(p) = exp
(
−ip

2

2k̄

) ∞∑
l=−∞

ilJl(K/k̄)ψn(p− lk̄) , (4.40)

where ψn(p) is the wave function in the momentum representation just before the nth

kick. The ladder structure in momentum space is once again apparent in this form of

the mapping. Also, since Jn(x) drops off exponentially with n for n > x, each kick

couples any given state to about 2K/k̄ other states.

Because the Hamiltonian for the kicked rotor is explicitly time-dependent, the

energy is not a constant of the motion, and therefore there are no stationary states for

the system. However, since the Hamiltonian is time periodic, we can define temporal

Floquet states (or quasienergy states), in analogy with the spatial Floquet/Bloch solu-

tions for the eigenstates of a periodic potential that we discussed in Chapter 2. We can

write these states in an arbitrary representation as

ψε(t) = e−iεt/k̄uε(t) , (4.41)

where uε(t) is a periodic function of time (with the same unit period as the scaled

Hamiltonian), and ε is the quasienergy of the state. These states are eigenstates of the

one-period evolution operator,

U(n+ 1, n)ψε = e−iε/k̄ψε , (4.42)

and thus are eigenstates in a stroboscopic sense, since their probability distribution is

invariant under one period of time evolution.

Before continuing with the discussion of the quantum kicked rotor dynamics,

it is useful to consider one more form for the quantum evolution equations. In the

Heisenberg representation, we can integrate the Heisenberg equation of motion for the
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operators to obtain a map for the operators xn and pn just before the nth kick:

pn+1 = pn +K sinxn
xn+1 = xn + pn+1 .

(4.43)

This Heisenberg map has exactly the same form as the classical standard map (4.17), but

with the classical variables replaced by quantum operators. What may seem surprising

at first is that there is no mention of the quantum parameter k̄. On iteration of the map,

the sin function will operate on combinations of x and p, generating products of these

operators at all orders, and thus Planck’s constant enters via the commutation relation

[x, p] = ik̄. As we argued in Chapter 1, then, it is the nonlinearity that brings about

quantum deviations from the classical behavior, and we also expect quantum effects to

show up after repeated iterations of the map, rather than after a single time step.

4.5.2 Dynamical Localization

The work of Fishman, Grempel, and Prange (FGP) [40, 41, 268] marked an important

milestone in the understanding of quantum localization. In this work, FGP showed that

the quantum mapping for the kicked rotor could be written in a form that suggests a

strong analogy with the problem of Anderson localization in one dimension [42, 268].

The Anderson problem considers the transport of an electron in a disordered potential,

which consists of an array of barriers with flat regions between. The barriers are char-

acterized by transmission and reflection probabilities, and classical particles that obey

these particles would diffuse spatially throughout the potential. In the quantum case,

if the barriers are arranged in a periodic fashion, there are certain particle energies that

permit ballistic motion through the lattice (corresponding to the Bloch states of the

system). This transport is analogous to the quantum resonance in the kicked rotor, to

which we will return in Section 4.5.3. If the barriers are disordered, though, there is

no resonance condition for long-range transport. In a path-summation picture [269],

there are many paths by which an electron can travel to a distant site, but as a result of

the disorder, the paths have random phases with respect to each other and thus tend to
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destructively interfere, effectively suppressing the quantum propagator for long-range

transitions. The eigenfunctions in the Anderson problem are known to be exponen-

tially localized, as opposed to the extended Bloch states. Additionally, FGP argued that

although the kicked rotor has a dense point spectrum, the quasienergy spectrum is lo-

cally discrete in the sense that a localized excitation in momentum leads to a discrete

spectrum, as states close together in quasienergy correspond to states that are widely

separated in momentum [41].

In the Anderson-like form of the kicked rotor, the discrete “sites” are the plane-

wave states in a momentum ladder, which are coupled by the kicks. The diagonal ma-

trix elements that describe the lattice-site energies are pseudorandom [268] if k̄/2π

is an irrational number (the rational case corresponds to the quantum-resonance phe-

nomenon). In a more direct picture, the free phase evolution exp(−ip2/2) between

each kick causes the momentum-state phases to “twist,” and the phases of widely sep-

arated momentum states become effectively randomized by this part of the evolution

for generic values of k̄. This pseudorandomness has essentially the same effect as the

disorder in the Anderson problem, and thus the kicked-rotor Floquet states are likewise

exponentially localized. This result provides a useful context for understanding dynam-

ical localization, since the evolution to a localized state can be viewed as a dephasing

of the quasienergy states. An initial momentum distribution that is narrow compared

to a typical quasienergy state must be a coherent superposition of Floquet states. As

time progresses, the precession of the phases of the basis states (each with different

quasienergy) results in diffusive behavior for short times. At long times, when the basis

states have completely dephased, the distribution relaxes to an incoherent sum of the

exponentially localized basis states, resulting in an exponentially localized momentum

distribution. For very long times, one also expects quantum recurrences as the basis

states rephase [36], but these timescales are far beyond what we can observe experi-

mentally.

An experimental measurement of dynamical localization is shown in Fig. 4.5.
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This plot shows essentially the picture at which we just arrived: the initially narrow

momentum distribution relaxes after a short time into a nearly stationary, exponen-

tial profile. The shapes of the distributions at various times are shown more clearly

in Fig. 4.6. In this semilog plot, the exponential tails of the distribution at late times ap-

pear as straight lines. In viewing these measurements, it is important to realize that this

localization is indeed dynamical localization and not the less interesting “adiabatic lo-

calization” [268], which is a result of the momentum boundary that we described above,

and is a classical effect. The clean exponential tails that we observe make it clear that

the dominant effect is dynamical localization, as adiabatic localization is characterized

by more sharply truncated tails at the momentum boundaries [202, 203].

Figure 4.5: Experimental measurement of the momentum-distribution evolution in the

kicked rotor, showing dynamical localization. Here K = 11.5 ± 10%, T = 20 µs (k̄ =
2.077), and tp = 0.283 µs. The nearly Gaussian initial distribution (σp/2�kL = 4.4)
relaxes rapidly to an exponential profile, which expands slowly.
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The analysis that revealed the exponential nature of dynamical localization has

implicitly assumed a kicked rotor, not a kicked particle. Since the continuous momen-

tum space of the particle consists of many discrete, uncoupled, rotor-like momentum

ladders, the same arguments apply to each ladder separately, and we expect localization

to occur in a similar way in the experiment. In fact, if the momentum distribution is

coarse-grained on the scale of k̄, the particle momentum distribution evolves to a much

smoother exponential profile than the rotor, due to averaging over the many ladders.

4.5.3 Quantum Resonances

In the cases where k̄/2π is a rational number, the motion is of quite a different (but still

distinctly nonclassical) character. To illustrate the effect here, we consider the case of

k̄ = 4π, and we restrict our attention to the “symmetric” momentum ladder, p = sk̄

for integer s (i.e., we are assuming a kicked rotor, rather than a particle). The kinetic
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Figure 4.6: Experimentally measured momentum distribution evolution, shown for 0,
10, 20, 40, and 80 kicks (K = 11.2±10%, k̄ = 2.077); the zero-kick case is the narrowest
distribution, and the 80-kick distribution is highlighted in bold. Because the vertical axis
in this plot is logarithmic, the tails of the localized (exponential) distribution appear as

straight lines.
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energy part of the evolution operator from (4.39),

exp
(
−is

2k̄

2

)
, (4.44)

collapses to unity, and the evolution operator for n kicks can be written as

exp
(
−inK cosx

k̄

)
. (4.45)

This operator is equivalent to the operator for a single super-kick with stochasticity pa-

rameter nK. Recalling the analysis based on the expanded form (4.40) of the quantum

standard map, the wave packet in this case will have propagating edges (asymptotically)

at p = ±nK. Correspondingly, the kinetic energy increases as t2, which is characteristic

of ballistic transport. This phenomenon is known as a quantum resonance [270, 271],

and is related to the Talbot effect in wave optics [272].

The situation is obviously more complicated for the kicked-particle case, since

the evolution operator does not trivially collapse for the other momentum ladders. The

other states do not exhibit ballistic transport, but rather form a localized, Gaussian-like

profile, which is narrower than the corresponding exponentially localized case [200]. An

analytic treatment of the transport in this more general case can be found in [201]. The

coexisting ballistic and localized behaviors at the k̄ = 4π quantum resonance are visible

in the measured and simulated evolutions in Fig. 4.7.

Experimentally, only the low-order quantum resonances (with k̄ an integer or

half-integer multiple of 2π) cause visible deviations from localization, as the higher-

order resonances can take extremely long times to become manifest. The other low-

order case that we have studied is the “antiresonance” at k̄ = 2π. For the symmetric

momentum ladder, the kinetic-energy part of the evolution operator collapses to (−1)s

for the state p = sk̄, which effectively amounts to a time-reversal operator (p → −p).

In this case, an initial state on this ladder reconstructs itself every other kick. In the

general particle case, the behavior is similar to that of the k̄ = 4π resonance [209].
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Figure 4.7: Experimental observation of ballistic transport at quantum resonance. The

evolution of the atomic momentum distribution is plotted for the experimental mea-

surement (a, b) and quantum simulation (c, d). The parameters are k̄ = 4π (T = 121
µs) and K = 184. The simulation assumed square pulses with tp = 0.295 ns, and used
an initial condition constructed directly from the experimentally measured initial dis-

tribution. In order to obtain good qualitative agreement and avoid numerical artifacts,

a large simulation (that averaged over an ensemble of 50 wave packets, with centers

distributed uniformly in position, and employed a grid spanning p/2�kL = ±256 with
a resolution of ∆p/2�kL = 1/1024, binned over 2�kL for a smooth distribution) was
necessary.
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4.5.4 Delocalization

We now turn to the concept of the destruction of localization in the quantum kicked

rotor. As the deviation from the classical dynamics is primarily a result of long-time

quantum correlations, dynamical localization should be susceptible to external noise

and environmental interaction, either of which would suppress these correlations. Note

that noise and environmental interaction are fundamentally different in nature: noise

is a unitary process, and is hence reversible in principle, whereas the latter case is an

interaction with a very large (i.e., possessing many degrees of freedom) external system

(reservoir), which is an inherently irreversible process. However, a noisy (stochastic)

perturbation is the important effect of the environment, as we argued in Chapter 1,

so that from an experimental point of view, these two situations are effectively equiv-

alent. For the quantitative study of delocalization in Section 4.6, we chose to study

noise effects because of the high degree of experimental control over the noise imple-

mentation. The first theoretical study of the influence of noise on the quantum kicked

rotor appeared in [35], where it was found that a sufficiently strong random perturbation

could restore diffusion at the classical rate. Soon thereafter, a more detailed theoretical

treatment was presented by Ott, Antonsen, and Hanson [133], who showed that if the

scaled Planck constant is sufficiently small, classical diffusion is restored, even for small

amounts of added noise.

In the heuristic picture presented in [268], the noise can be characterized by

a coherence time tc, beyond which quantum coherence is destroyed. In the case of

weak noise, where tc � tB, the noise restores diffusion after the break time at a rate

proportional to 1/tc, which is much slower than the initial classical-like diffusion phase.

If, on the other hand, the coherence time is less than the break time, then we expect

(for small �) that localization is completely destroyed and classical behavior is restored.

We will now examine experimental evidence that localization can be destroyed

by interaction with optical molasses. This situation is effectively an interaction with a
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dissipative environment, which causes momentum perturbations due to the photon ab-

sorption and emission and also dissipation of kinetic energy due to the cooling effect of

the molasses. The effect on the kinetic energy evolution is plotted in Fig. 4.8 for several

different values of the spontaneous scattering rate. Qualitatively, the energy diffusion

increases with increasing scattering rate. This increased heating cannot be explained in

terms of trivial photon-recoil heating because the molasses cools the distribution, and so

the increased heating indicates the destruction of localization. The corresponding effect

of the molasses light on the momentum distribution evolution is shown in Fig. 4.9. The

exponential profile is again evident in the zero-noise case. As the spontaneous emission

is applied, the late-time distribution becomes rounder, taking on a Gaussian profile in

the cases of 5.3% and 13% scattering probability per kick (this seems to disagree with

[273], where it is claimed that the distributions remain “essentially exponential” with

scattering rates around 5%/kick).

51 68

110

120

130

0 10 20 30 40 50 60 70
0

50

100

150

Time (kicks)

E
n
er
g
y

(
( p
/2

k L
)2

/2
)

Figure 4.8: Experimental observation of decoherence due to spontaneous photon scat-

tering in optical molasses. The scattering probabilities are 0% (circles), 1.2% (filled

triangles), 5.0% (open triangles), and 13% (diamonds) per kick, and the kicked-rotor

parameters are K = 11.9± 10% and k̄ = 2.077. Although spontaneous emission gener-
ally causes momentum diffusion and therefore heating of the atomic sample, the optical

molasses cools the atoms, as shown in the inset, where the molasses interaction was

added after the lattice kicks. Thus, the enhanced diffusion in this dissipative case is

due only to the destruction of localization.
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The reader may notice in Fig. 4.8 that the late-time energy growth in the zero-

noise case, while slower than the short-time growth, is still nonzero, as we might expect

from a simple picture of localization. However, “perfect” localization is not necessarily

expected over the time scales considered in the experiment, as we can see from the

quantum simulation in Fig. 1.5. We have verified that this late-time growth is not due to

the nonideal effects of the optical lattice discussed in Chapter 2 by varying the lattice

detuning while keeping V0 constant by compensating with a corresponding lattice inten-

sity change. The other sources of noise are small, but it is difficult to rule out residual

phase noise of the lattice (caused by mechanical vibrations of the retroreflecting mirror)

as a contribution to late-time diffusion. (Recall that we have characterized the phase
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Figure 4.9: Experimental study of how the dissipative optical molasses interaction influ-

ences the momentum distributions in the quantum kicked rotor. The scattering rates

here, 0%, 1.2%, 5.3%, and 13%, correspond closely to those displayed in Fig. 4.8. At the
higher scattering rates, the late-time distribution makes a transition from the localized

exponential profile to a classical-like Gaussian shape (which appears parabolic in these

semilog plots).
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noise in the optical lattice in Section 3.4.2).

We have also studied the effects of amplitude noise in the quantum kicked rotor

(we examine these results in Section 4.6), as well as noise in the time between kicks

and spontaneous emission from a far-detuned traveling wave applied between kicks.

All of these noises cause a similar transition from localization to classical-like diffusion

at late times. The different types of noise should in principle be different in nature.

Amplitude noise is “ladder-preserving,” which means that atoms can still only change

momentum by 2�kL at a time, even with this perturbation. Other types of noise, such as

spontaneous emission, are “nonperturbative” in the sense that they can break this ladder

symmetry. As a result of the interaction of the previously uncoupled ladders, this noise

can lead to more effective destruction of localization [105, 268, 274]. A quantitative

comparison between perturbative and nonperturbative noises is difficult, though, and

we cannot distinguish any differences based on our current data. A clean quantitative

study would probably best be accomplished with different types of noise than we have

studied, which could be for example a perturbation by a second lattice with a different

period [274] (realized by crossed but not counterpropagating laser beams).

4.5.5 Quantum Correlations

The above analysis leading to exponential quantum localization was based on dynam-

ically generated disorder, and therefore we might expect that correlations also play

an important role in the quantum dynamics. Shepelyansky showed numerically [35]

and analytically [275] that whereas the classical correlations drop off quickly with time

(when any residual stable structures are too small to affect the dynamics on a short time

scale, i.e., away from the accelerator modes), the quantum correlations persisted for

much longer times than the corresponding classical correlations. In contrast, for cases

of smaller K (and hence more stability), the quantum and classical correlations were

similar after the break time. This difference in the correlations is intuitively clear from

Eq. (4.23). For localization, the long-time quantum correlations near the break time
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must be negative, bringing this sum to nearly zero, in order for the diffusion to freeze.

For the quantum resonance case, the correlation series must have a long positive tail,

such that the sum (4.23) diverges.

Shepelyansky also made another important observation regarding the quantum

correlations, which will be important for the interpretation of the results presented here.

In particular, he calculated the first few quantum correlations and found that they had

approximately the same form as the corresponding classical correlations upon the sub-

stitution [105, 275, 276]

K −→ Kq :=
sin(k̄/2)
k̄/2

K . (4.46)

(Note, however, that the correlations used in [276] were defined without the factor of

K2 that appears in Eq. (4.21).) Hence, a good approximation for the initial quantum

diffusion rate in the absence of noise is

Dq(K, k̄) =
K2

2

(
1
2
− J2(Kq)− J 2

1 (Kq) + J 2
2 (Kq) + J 2

3 (Kq)
)
, (4.47)

where, as in the classical calculation, it is assumed that the initial quantum distribution

is uniform over the unit cell in the classical phase space. Consequently, there is an

oscillatory dependence of the initial quantum diffusion rate onKq that is closely related

to the underlying classical dynamics. However, the oscillations are shifted due to the

quantum scaling factor in (4.46). Since the width of the localized distribution (the

localization length) is related to the initial diffusion rate by the heuristic/numerical

result [268, 276],

tB ≈ ξ = Dq

k̄2
(4.48)

(where ξ is the localization length of the Floquet states, so that the momentumprobabil-

ity distributions have the form exp[−|p−p0|/(ξ/2)]), these oscillations are also apparent

in the long-time quantum distributions.

This oscillatory structure and the confirmation of the quantum scaling is shown

in Fig. 4.10, where the experimentally measured energy is plotted for a fixed interaction
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time as a function of Kq. The correct quantum scaling causes the oscillations in these

curves to match for different k̄. At the maxima of these curves, the late-time momentum

distributions are not exponential, having more of a curved profile in the tails, as shown

in Fig. 4.11. This effect is likely an influence of the accelerator modes and possibly

other stable structures. Theoretical work has shown that classical anomalous transport

enhances fluctuations in the Floquet-state localization lengths [277], and the deviations

of the quasienergy states from a purely exponential shape may also be due to classical

correlations [278]. We will also return to this issue of the late-time distribution shape

in Section 4.7.

Notice that to reach the classical limit in our experiment, the short-term corre-

lations must also be modified by the noise. This is especially true in view of the shift

caused by the quantum scaling factor in (4.46), which shifts the diffusion oscillations by

Figure 4.10: Experimental verification for the scaling of Kq. The measured ensem-

ble kinetic energy is plotted for a fixed time as a function of the rescaled stochas-

ticity parameter for several values of k̄. The measurement times are 35 kicks (k̄ =
1.04, 1.56, 2.08, 3.12, 4.16), 28 kicks (k̄ = 5.20), and 24 kicks (k̄ = 6.24). The solid line
is a plot of the classical (standard map) diffusion rate, Eq. (4.24). The locations of the

oscillatory structures match well when plotted in terms of the rescaled K, supporting
the validity of the Kq scaling.
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about 20% inK for the typical experimental value k̄ = 2.08 in the experiments here. It

is possible to generalize the work of Shepelyansky leading to Eq. (4.47) to include am-

plitude noise in essentially the same way as in the classical calculation, with the result

(see Section 4.8 for details)

Dq(K, k̄) =
K2 +Var(δK)

4
+
K2

2
(
−Q2(Kq)−Q 2

1 (Kq) +Q 2
2 (Kq) +Q 2

3 (Kq)
)
,

(4.49)

where

Qn(Kq) :=
∫ ∞
−∞
P (δK)Jn(Kq + δKq)d(δK), (4.50)

and δKq = δK sin(k̄/2)/(k̄/2). Thus, the short-time quantum correlations are washed

out in much the same way as the classical correlations, as in Eq. (4.29). However, since

the locations of the classical and quantum oscillations in D(K) are different for our

operating parameters, we can conclude that in order to observe good correspondence

between quantum and classical evolution, the applied noise must be very strong (i.e.,
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Figure 4.11: Experimentally measured momentum-distribution evolution, shown for 0,
10, 20, 40, and 80 kicks. In this plot, K = 8.4 ± 10%, k̄ = 2.077, corresponding to
a peak in the quantum diffusion curve (as in Fig. 4.10). The zero-kick case is the nar-

rowest distribution, and the 80-kick distribution is highlighted in bold. The late-time

distribution is qualitatively different from the exponentially localized case in Fig. 4.6,

which corresponds to a minimum in the quantum diffusion curve.
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we must have tc on the order of one kick, so that all the higher-order correlations are de-

stroyed). In this case, both quantum and classical diffusion will proceed at the quasilin-

ear rate, since the diffusion oscillations will be destroyed (as in Fig. 4.3), and the global

behavior will be the same. For lower levels of noise, we might expect to recover diffusive

behavior in the quantum system (if the long-time correlations responsible for localiza-

tion are destroyed), but possibly at a rate that does not match the classical prediction.

Heuristically, in the picture of [105, 133], the noise causes diffusion in momentum at a

rate 2D, and we can expect coherence to be broken when diffusion occurs on the scale

k̄ between neighboring momentum states, so that

tc =
k̄2

2D
. (4.51)

For the case of uniformly distributed amplitude noise, this estimate becomes

tc =
24k̄2

(δKp−p)2
. (4.52)

We can insert some values corresponding to the data to be analyzed in Section 4.6.2.1,

where K = 11.2 and k̄ = 2.08. In order to break localization, we must have tc ∼ tB,

which is around 10 kicks in the experimental data, thus requiring about 30% amplitude

noise. To obtain good correspondence, however, requires tc ∼ 1 for quasilinear diffusion,

and thus the higher noise value of around 90%. These simple estimates are in reasonable

agreement with the experimental data.

4.6 Quantitative Study of Delocalization

Up to this point, we have shown that noise can lead to a loss of localization, with dis-

tributions that have a classical form. However, we have not yet addressed the more

interesting question of whether the experimental data match the classical prediction in

the presence of noise. Answering this question in a quantitative way requires a nontriv-

ial amount of effort in carefully modeling the experiment in order to make an accurate

classical prediction for comparison with the experimental data.
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4.6.1 Classical Model of the Experiment

In order to facilitate an accurate comparison of the experimental data to the classical

limit of the kicked rotor, we have performed classical Monte Carlo simulations of the

experiment. In these simulations, a large number (2× 105) of classical trajectories were

computed, each with a distinct realization of amplitude noise; momentum distributions

and ensemble energies were then extracted from this set of trajectories. Additionally,

we accounted for several different systematic effects that were present in our experi-

ment, in order to provide the best possible classical baseline for comparison with the

experimental data. In the remainder of this section we describe in detail each of the

systematic effects that we have accounted for and how we have included them in the

comparison of the data to theory.

The effects that we will describe in this section are illustrated in Fig. 4.12. This

plot compares the energy evolution for different cases where different corrections are

accounted for. As each correction is (cumulatively) taken into account, the resulting

energy curve is lower and less linear. Indeed, there is quite a large difference between

the uncorrected, linear δ-kick curve that one might expect to observe and the fully

corrected curve. The importance of this rather technical discussion of experimental

details is clear: without carefully taking into account these systematic effects, one might

mistakenly attribute curvature in the experimental energy data to residual quantum

localization effects. It is also important to emphasize that these effects cause a reduction

in the dynamic range of the experimental measurements, but they do not change the

underlying physics in a fundamental way. Finally, we note that most of these systematic

effects are such that it is either impractical or impossible to compensate for them with

a simple correction to the experimental data. In this sense, the “energies” that we use

in our comparisons are not true energies, but relatively complicated functions of the

true energies and many other experimental parameters. It is therefore the ability to

take these effects into account in the classical simulations that allows for a meaningful

quantitative comparison between our experiment and classical theory.
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The first, and perhaps most important, effect that we account for is the de-

tailed pulse shape f(t) of our kicks. The nonzero temporal width of the pulses leads

to an effective reduction in the kick strength at higher momenta, as we discussed in

Section 4.4.4, and so it is important to accurately model the experimental pulses in or-

der to reproduce the correct tails in the momentum distributions. It turns out that our

experimental pulses are well modeled by the function

f(t) =
1

2ηerf

[
erf

(
(t− t1)

√
π

δt1

)
− erf

(
(t− t2)

√
π

δt2

)]
, (4.53)

where t2 − t1 = 295 ns is the full width at half maximum (FWHM) of the pulse,

δt1 = 67 ns is the rise time of the pulse (defined such that a straight line going from

0 to 100% of the pulse height in time δt1 matches the slope of the rising edge at the
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Figure 4.12: Example of how the systematic effects described in the text can affect the

measured energies. Shown are the simulated average energy evolution for typical operat-

ing parameters (K = 11.2, 100% noise level) and typical parameters for the systematic

corrections. The solid curve is the ideal case, corresponding to the δ-kicked rotor with
no corrections; the successively lower curves represent the cumulative result as each

effect is accounted for (in the order of presentation in the text): nonzero pulse duration

(dashed), MOT (detection) beam profile (long dot-dash), clipping due to width of CCD

chip (dotted), profile of interaction beam/transverse atomic motion (long dashes), cor-

rection for free-expansion measurement (dot-dash), and vertical-offset bias (thin solid).
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half-maximum point), δt2 = 72 ns,

erf(x) :=
2√
π

∫ x

0
exp(−t2)dt (4.54)

is the error function, and ηerf is a normalization factor, which takes the value t2 − t1
for small values of δt1,2/(t2 − t1). The function (4.53) is plotted along with a mea-

sured optical pulse in Fig. 4.13. The rise and fall times in the pulse were mainly due

to the response time of the switching AOM for the Ti:sapphire laser beam and the rise

time of the SRS DS345 arbitrary-waveform synthesizer that drives the AOM controller.

It should be noted that although the agreement between the pulse model and the ex-

perimentally measured pulses is excellent, Eq. (4.53) is merely an empirical model of

our observed pulse profiles. In the simulations, the classical equations of motion were

directly integrated, using Eq. (4.53) for the kick profile.

The next effect that we consider is due to the Gaussian profile of the optical

molasses laser beams. Recall that to measure momentum distributions, we imaged the

light scattered by the atoms from the molasses beams after a free-expansion time. Since
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Figure 4.13: Model function (4.53) for the experimental pulses (dashed line) compared

to an actual experimental pulse as measured on a fast photodiode (solid line). The two

curves are nearly indistinguishable.
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the light was not uniform over the atomic cloud, the scattering rate due to atoms with

momentum p is given by

Rsc = N (p)
(
Γ
2

)
(I(x)/Isat)

1 + 4 (∆/Γ)2 + (I(x)/Isat)
, (4.55)

whereN (p) is the number density of atoms with momentum p, I(x) is the local intensity

at spatial position x, Γ is the excited state decay rate, and Isat is the saturation intensity

(= 2.70 mW/cm2 for approximately isotropic pumping on the trapping transition).

Also, in the free expansion measurement, the unscaled variables x and p are related by

x = vr(p/�kL)tdrift , (4.56)

where vr = 3.5 mm/s is the velocity corresponding to a single photon recoil, and tdrift is

the free drift time of the momentum measurement. The spatial intensity profile of the

six beams is given by

I(x) = 2I0
[
e−2x

2/w 20 + 2e−(x
2+2z2)/w 20

]
, (4.57)

where I0 is the intensity at the center of one of the six beams, w0 = 11 mm is the

beam-radius parameter of the Gaussian beams, z is the vertical position of the atoms

(transverse to the standing wave, in the direction of gravity), the first term represents

the two vertical beams, and the last term represents the four horizontal beams, each at

45◦ to and in the horizontal plane with the standing wave. To account for this effect, we

applied a correction to the classical simulation of the form

fmol(x) =
fI(x)

c2 + fI(x)
, (4.58)

where fI(x) = I(x)/2I0 is a scaled intensity profile, and c2 = [1+4(∆/Γ)2][Isat/(2I0)].

The value of c2 was determined to be 5.94 by fitting the correction (4.58) to a known

exponentially localized distribution for various drift times; this value is in reasonable

agreement with the expected value of c2 from the laser parameters.

The finite extent of our imaging CCD camera chip also had an impact on our

measurements. We set up our imaging system such that a typical localized distribution
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was just contained within the imaged area after a 15 ms drift. For strongly noise-driven

cases, though, the momentum distribution could extend significantly past the edges of

the imaged area. This effect had little impact on the measured momentum distribu-

tions, since it only restricted the measurable range of momentum. However, the ener-

gies computed from this momentum distribution are sensitive to this truncation, even

if the population in the truncated wings is small. The result is a systematic reduction in

the measured energy. It was straightforward to model this effect in the simulations by

rejecting trajectories that fall outside the experimental window.

Another effect that we accounted for is the transverse position of the atoms

in the standing-wave beams. Although the spatial size of the beam (with 1/e2 radius

w0 = 1.5mm) was large compared to the size of the initial MOT cloud (σx = 0.15mm),

the variation in kick strength over the atomic distribution must be accounted for, espe-

cially as the evolution progresses and the atoms move further out transversely. Hence

each atom sees an effective kick strength of Kmax exp[2(y(t)2+ z(t)2)/w2
0], where the

transverse coordinates y and z are given in scaled units by

y(t) = y0 + py0t
z(t) = z0 + pz0t− gt2/2 .

(4.59)

In these equations, we have used the scaled gravitational acceleration g, which is re-

lated to the acceleration in physical units by g = 2kLT 2gphys. In the simulations, each

particle was given initial transverse positions y0 and z0 according to a Gaussian distri-

bution that matched the measured MOT size, and initial momenta py0 and pz0 that

matched the momentum distribution measured along the standing wave. It should be

noted that this correction may actually increase or decrease the final energies compared

to an uncorrected simulation using the mean value of K, even though the mean value

of K effectively decreases with time. This is because a subset of the atoms may com-

pletely dominate the diffusion if they are located more closely to one of the maxima of

D(K). For the beam waist/MOT size ratio used here, there is a spread in K of around

5% in our initial distribution.
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We additionally accounted for a systematic effect that occured in our free-expansion

measurement technique. This technique relied on allowing the atomic cloud to expand

freely for 15ms after the interaction with the standing wave in order to convert the spa-

tial distribution of the atoms into an effective momentum distribution. However, the

interaction with the standing wave lasted as long as 1.6ms for these experiments. Since

we define the drift time as the time from the beginning of the standing-wave interaction

to the beginning of the camera exposure, the drift time effectively becomes smaller as

the number of kicks in the experiment increases. There is no simple way to directly

correct for this effect, so we included this effect in our simulations by simulating the

free-expansion process. The initial spatial distribution was chosen (in scaled units) to

be uniform in the range [−π, π), which is extremely small compared to the spatial dis-

tribution after the expansion. We did not choose the distribution from the MOT spatial

distribution to account for convolution effects; these effects have been approximately

accounted for already, since the initial momentum distribution used in the simulations

is the measured momentum distribution, which was already convolved with the initial

spatial distribution. Then the effective momentum of each particle measured by the

free-expansion method is given by

peff(t) = x(t) +
(
tdrift − t
tdrift

)
p(t) , (4.60)

where all quantities in this equation are scaled.

The final effect that we took into account was due to variations in the back-

ground levels measured by the data acquisition (Princeton Instruments) camera. Al-

though we performed background subtraction, which greatly improved our signal-to-

noise ratio, the offset levels after the subtraction were generally nonzero, due to fluctu-

ations (from drifts in the camera electronics) and constant offsets (from physical effects

in the imaging of the atomic cloud). To enhance the reproducibility of our data, we used

the following procedure to fix the zero level of our measured distributions: the 40 lowest

points (out of 510 total) in the distribution were averaged together and defined to be the
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zero level. The disadvantage of this technique is that it resulted in a slight negative bias

in the offset level from the “true” distribution. For typical measurements of localized

distributions, the bulk of the distribution was contained well within the imaged region.

In these cases, the measured values near the edges of the imaged region were small

compared to those in the center of the distribution, and the error in the offset was neg-

ligible. However, for strongly noise-driven cases, a significant fraction of the distribution

could fall outside the imaged region, as noted above. In these cases, the lowest 40 values

were then significantly different from the true zero level, and our procedure introduced

a significant bias. It was straightforward to mimic this process in the simulations, but in

some data sets it was possible to restore the correct offset level. For our typical studies

of the transition from localized to delocalized behavior, the only cases that were signif-

icantly biased are the strongly noise-driven cases, which behaved essentially classically

(as we will see later). Then one can assume that the biased cases can be modeled as

Gaussian distributions, with the MOT beam profile correction applied to them, and ob-

tain the correct offset by fitting the model function to the measured distribution. This

ansatz was justified by the essentially perfect fit of the model function whenever its use

was appropriate. Using this idea, we implemented an automatic procedure for restoring

the correct offset in the data sets where the procedure was sensible (Figs. 4.15-4.20).

In other data (Fig. 4.14), such as measurements of exponentially localized distributions

with very long localization lengths, such a procedure was clearly inappropriate, and this

effect was instead accounted for in the corresponding simulations.

There are a few other effects that we did not account for in the simulations,

including spontaneous emission, the stochastic dipole force, collisions between atoms,

and other sources of noise, most notably phase jitter in the standing wave (we have dis-

cussed all these effects in more detail in Chapter 2). These effects cause decoherence,

but they were sufficiently weak that at low levels of applied amplitude noise, quantum

effects were easily observed, and at high amplitude noise levels, the applied noise dom-

inated any effects that these other processes might have had. Thus, these effects did



140

not hinder our ability to study quantum-classical correspondence in our system.

We also note that the corrections we have mentioned lend themselves well to

classical Monte Carlo simulations, whereas with other methods it would be quite cum-

bersome to take the many aspects of the experiment into account. A similar, quantum-

mechanical analysis is much more difficult, however, as one would need to average over

many wave packets in a Monte Carlo approach to obtain good convergence, and the evo-

lution for a single quantum wave packet requires much more computation than for a

single classical particle.

4.6.2 Data and Results

In this section we will explore a detailed experimental study of the quantum kicked

rotor dynamics in the presence of amplitude noise, using the classical model for com-

parison. An overview of these results appears in Fig. 4.14, where the energies from

the experiment and classical model are shown as a function of the kick strength K, for

four different levels of amplitude noise. The energies are plotted at the fixed time of 35

kicks. In the case of no applied noise, one can clearly see the oscillations that correspond

to Eqs. (4.24) and (4.47). Additionally, the shift in the locations of the experimental os-

cillations from their classical counterparts is evident; for the value of k̄ = 2.08 used in

all the experiments shown here, the shift is 20% above the classical value. Although

in some locations the quantum (experimentally observed) energies are larger than the

classical (numerically calculated) energies due to the shift of the oscillations, the exper-

imental energies are smaller on average than the classical energies because of quantum

localization effects.

As the noise is added, the oscillations in the energy curves become washed out,

as one expects from Eqs. (4.29) and (4.49). Additionally, the difference between the

experimental and classical curves becomes less apparent, until the highest noise level

(80%), where there is excellent agreement between the two curves. In accordance

with our previous discussion, good correspondence only occurs when the noise level is
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Figure 4.14: Plot of the experimentally measured energy (points connected by solid

lines) and energy from the classical model (dashed line) as a function of the stochasticity

parameter K, for several different levels of applied amplitude noise. All the plotted

energies are measured at the fixed time of 35 kicks. The oscillations and the shift due to
quantum effects, corresponding to Eqs. (4.24) and (4.47) with k̄ = 2.08, are evident in
the case with no applied noise. On average, the experimental energies at the lower noise

levels are smaller than their classical counterparts due to localization effects. However,

for the strongest noise level shown here (80%), there is good agreement between the
two energy curves. For this figure, no adjustments have been made to the measured

values of K, and the error bars for the energy values are suppressed, but are typically
smaller than the corresponding dots. Each experimental point is an average over 10
realizations of amplitude noise. Two arrows in the zero-noise case mark the locations of

detailed study that are described in the following two subsections.
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sufficiently large to destroy the short-time quantum and classical correlations, and hence

the oscillations in the diffusion curves.

To fill out this picture of the kicked-rotor behavior, detailed views of the exper-

imental and classical dynamics at two values ofK appear below. The two values ofK in

these detailed measurements correspond to a minimum and a maximum of the quantum

energy curve in Fig. 4.14; these locations are indicated as arrows in the zero-noise plot in

this figure. As wementioned above, the dynamics are qualitatively different at these two

locations. At the minima of the experimental diffusion curve, exponential localization

occurs. However, at the maxima, the late-time distributions that we measured in our

experiment are nonexponential; this behavior is a fingerprint of the underlying classical

anomalous diffusion.

In Figs. 4.15-4.20, we contrast the behavior of the experimental and classical

systems at these two values of K. The behaviors at small noise levels have several in-

teresting differences, but as we have already seen, the behavior at high noise levels is

similar in that there is good correspondence between the experiment and the classical

simulations. In Figs. 4.15 and 4.18, we see the behaviors of the energies at the min-

imum and maximum of the experimental diffusion curve, respectively, at a fixed time

(50 kicks) as the level of noise varies. The time evolutions of the energies are shown in

Figs. 4.16 and 4.19 for the two values of K at various levels of noise. Finally, the corre-

sponding evolutions of the momentum distributions themselves are shown in Figs. 4.17

and 4.20. We will discuss these results for the two values ofK separately in the following

presentation.

Before proceeding, though, a few remarks are in order about the comparisons

between the experiment and the corresponding classical dynamics performed in this pa-

per. The classical model contains many experimental parameters beyond the two that

are really important for the quantum kicked rotor dynamics (K and k̄). For the purposes

of comparison, these extra parameters were not treated as fitting parameters; instead,

they were all fixed to their experimentally measured values. However, the stochastic-
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ity parameter K, which is by far the largest source of uncertainty in the experiments,

was sometimes adjusted by a few percent from its measured value (but well within the

experimental uncertainty of ±10%) in order to obtain better correspondence. To be

precise about these adjustments, the measured values of K are quoted in each figure

caption along with the value used in the classical simulations. Finally, as noted before,

although statistical errors for our energy measurements are quoted in each figure, they

are of limited utility in determining the quality of the correspondence between the ex-

perimental results and classical simulations. The main reason for this statement is the

long-term optical alignment and laser drifts that result in long-term drifts in K, which

can result in local systematic shifts in energies between different curves (or even points

within a curve) in each figure. This effect is not properly accounted for by either the

statistical error estimates or the simulations, which used a single value ofK for an entire

data set. For example, in Figs. 4.16 and 4.19, it is not possible to distinguish different

levels of agreement between the data and simulations for the 60-200% noise levels, al-

though some pairs of curves may appear to agree more closely than others. Indeed, it

is important to realize that the momentum distributions are the most reliable tool for

studying correspondence, since they contain much more information and tend to be less

sensitive to the problems we have mentioned. The energies, on the other hand, are still

valuable as a concise summary of the large amount of information presented here.

4.6.2.1 Detailed Study: Destruction of Exponential Localization

We now focus on the behavior at the minimum of the experimental diffusion curve, as

indicated by the rightmost arrow in Fig. 4.14. In this regime, the atoms localize in an

exponential distribution at late times. In Fig. 4.15, there is a large difference between

the experimental and classical energies after 50 kicks when no noise is applied. This

difference is due to both dynamical localization and the misalignment of the quantum

and classical diffusion oscillations, which gives the classical system a larger initial diffu-

sion rate. As noise is added, both the experimental data and the classical simulations
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exhibit increased diffusion, as the short-time correlations are washed out. The increase

in the experimental diffusion is larger than the classical diffusion because quantum lo-

calization is destroyed. At high noise levels, the agreement between experiment and

classical simulation is good. Additionally, both curves exhibit a characteristic dip in the

energy around 150% noise levels. This somewhat surprising effect is a result of resid-

ual short-time correlations, which persist at noise levels as high as 100%, where they

enhance diffusion slightly above the quasilinear value.

Similar behavior occurs in the time evolution of the energies shown in Fig. 4.16.

When there is no applied noise, the experimental energy grows initially more slowly

than the classical energy, and then saturates and diffuses slowly. As we noted before,

this slow diffusion may be due to residual decohering effects in our experiment, such as
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Figure 4.15: Experimentally measured energy (points and solid lines) and energy from

the classical model (dashed line) as the noise level is changed, for a fixed time (50 kicks)
and stochasticity parameter (the experimental value is K = 11.2 ± 10%, the classical
simulation corresponds to K = 10.9). At the lowest noise levels, there is a significant
difference between the experimental and classical energies, due to both localization

and differences in short-term correlations, which disappears for high noise levels. The

error bars represent statistical scatter among the 18 noise realizations comprised in each
point, but do not account for long-term drifts or systematic uncertainties (see note in

text). The value ofK used here corresponds to the rightmost arrow in Fig. 4.14.
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Figure 4.16: Experimentally measured energy (points and solid lines) and energy from

the classical model (dashed line) as a function of time, for various levels of applied

noise. The experimentally measured stochasticity parameter is K = 11.2 ± 10%, and
the simulation corresponds to K = 11.2. The experimental data points are averages
over 15 distinct realizations of amplitude noise, and data for successive noise levels are
offset vertically by 200 for clarity. The agreement between the experimental data and
the classical model is excellent for noise levels of 60% and above. The value ofK used

here corresponds to the rightmost arrow in Fig. 4.14.
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phase noise in the standing wave. As noise is added, the diffusion is enhanced in both

cases, and for high noise levels the energy growth in the experiment is quite similar to

that observed in the simulations.

Finally, the transition to classical behavior in the experiment is most dramatically

evident in the momentum distributions in Fig. 4.17. In the zero-noise case, the exper-

imental distribution evolves from the initial, nearly Gaussian form to the exponentially

localized distribution (shown in bold), which is characteristic of dynamical localization.

The classical distribution, on the other hand, evolves to the broader, Gaussian distri-

bution that one expects from classical physics. When a small amount of noise (20%) is

applied, the final experimental distribution is broader and has a rounded appearance,

but is still quite far away from the classical Gaussian distribution. With 40% noise, the

final experimental distribution has made the transition to a Gaussian profile, but the

evolution still does not quite match that of the classical evolution. For the highest levels

of noise shown (60-200%), the evolutions of the experimental and classical distributions

are nearly identical, providing strong evidence that the experiment is behaving classi-

cally.

4.6.2.2 Detailed Study: Regime of Classical Anomalous Diffusion

We now focus on a different regime than in the last section. Here we consider the

behavior at a peak in the experimental diffusion curve, indicated by the leftmost arrow

in Fig. 4.14. This location in the diffusion curve corresponds to a regime of classical

anomalous diffusion. As in the previous case, there is a significant difference in the

energy after 50 kicks in the absence of noise, as seen in Fig. 4.18. The difference in this

figure is much larger than in Fig. 4.14 because of the much later time used in the plot

(50 vs. 35 kicks). As noise is applied, the experimental energy increases. This behavior

is consistent with the breaking of localization, although it is not completely clear that

localization occurs in this regime, because of the nonexponential form of the long-time

momentum distributions. By contrast, the classical energy is initially reduced by the
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applied noise, due to the destruction of the classical correlations. Again, for high noise

levels the behavior in the experiment is well described by the classical model.

From the evolution of the energies in Fig. 4.19, we see that the differences

between the behaviors of the atoms and the classical model are more subtle than in the

case of the previous section. When there is no applied noise, the experimental data show

a faster initial diffusion than one would expect classically; at later times, the diffusion

seems to saturate, suggesting that localization effects are setting in, and the diffusion

proceeds more slowly than in the classical model. The energy difference in this case is

smaller than one might expect from Fig. 4.18, due to slight differences in the intensity

and beam diameter of the kicking laser light between the two data runs (notice that

180

200

220

240

260

280

0 50 100 150 200
noise level (%)

en
er

gy

  

(p
/2

hk
L
)2

/2

Figure 4.18: Experimentally measured energy (points and solid lines) and energy from

the classical model (dashed line) as the noise level is changed, for a fixed time (50 kicks)
and stochasticity parameter (the experimental value isK = 8.4±10%, the classical sim-
ulation corresponds toK = 8.4). As in the case of Fig. 4.15, there is a large discrepancy
between the experimental and classical energies at the lowest noise levels, which disap-

pears for high noise levels. Experimental data are averaged over 18 realizations of noise.
The value ofK used here corresponds to the leftmost arrow in Fig. 4.14. Note the larger

discrepancy for zero noise in this figure, since the time displayed here is later than that

used in Fig. 4.14. Note also that the vertical scale used here is magnified compared to

that of Fig. 4.15.
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Figure 4.19: Experimentally measured energy (points and solid lines) and energy from

the classical model (dashed line) as a function of time, for various levels of applied

noise. The experimentally measured stochasticity parameter is K = 8.4±10%, and the
simulation corresponds to K = 8.7. The experimental data points are averages over 15
distinct realizations of amplitude noise, and data for successive noise levels are offset

vertically by 200 for clarity. The agreement between the experimental data and the

classical model is again excellent for noise levels of 60% and above. The value ofK used

here corresponds to the leftmost arrow in Fig. 4.14.
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this value of K corresponds to a steeply sloped region in the classical diffusion curve).

As noise is added, the saturation is less pronounced, until the 40% noise level, where

the diffusion occurs more quickly than in the classical model, with little indication of

saturation. Above this level, the experiment agrees well with the classical model, and

the short-time correlations are evidently small.

The momentum distributions for this case are shown in Fig. 4.20. In the zero-

noise case, the experimental distribution after 70 kicks (highlighted in bold) has a char-

acteristic profile, rounded and nonexponential in shape. One might be tempted to at-

tribute this shape to the systematic effects that we have discussed, which affect the tails

of an exponential distribution with a very long localization length. However, the region

over which the distribution is rounded is well within the domain where the system-

atic effects are not significant. The final classical distribution also has tails that extend

well beyond those of the experimental measurement. As noise is introduced, the ex-

perimental profile becomes more Gaussian, and the classical diffusion rate is reduced

slightly. As in the previous section, the final experimental distribution for 40% noise is

Gaussian, but the evolution does not quite proceed at the same rate (as one can most

readily see from the distributions at intermediate times). The difference, though, is

that the quantum diffusion occurs more quickly than the classical expectation, whereas

in the previous section the diffusion occurred more slowly than in the classical model.

Again, for the highest levels of noise shown (60-200%), the experimental evolutions are

in excellent agreement with the classical model, and hence classical behavior is restored.

4.7 Comparison with a Universal Theory of Quantum Transport

Beyond examining the problem of quantum–classical correspondence, these experimen-

tal results are also useful for studying details of quantum transport. Specifically, we

can compare these results with a recent quantum diffusion theory by Jianxin Zhong,

Roberto Diener, Qian Niu, and others [214]. This theory concerns the shape of the tails
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of a spreading quantum wave packet, described by the stretched exponential function

P (x, t) ∼ exp(−|x/w|γ) , (4.61)

where w(t) is the time-dependent width parameter. The exponent γ here is stationary,

and is within the range [1,∞). This diffusion theory then relates this exponent to the

scaling exponent for the width parameter,

w(t) ∼ tβ , (4.62)

via the universal relation

γ = 1/(1− β) . (4.63)
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Figure 4.21: Comparison of the diffusion theory in Eqs. (4.61-4.63) to the experimental

momentum distribution evolution, for the exponentially localized case. The experimen-

tal distributions for K = 11.2, k̄ = 2.08, and times of 30, 40, 50, 60, and 70 kicks are
shown as solid lines, and the simultaneous best fit to the tails of all the distributions is

shown as dashed lines. The 70 kick cases are highlighted in bold. The fitted exponents
here are γ = 1.06± 0.19 and β = 0.06± 0.17, in good agreement with the expectations
for dynamical localization.



153

This relation is expected to hold for lattice-type models with Schrödinger equations of

the form

i∂tψ(n, t) = V (n)ψ(n, t) +
∑
n′

h(n, n′)ψ(n′, t) , (4.64)

where ψ(n, t) is the amplitude at the nth lattice site, V (n) is the lattice-site potential

energy, and h(n, n′) is the “hopping integral,” which describes the couplings between

the sites (for the common “tight-binding” models, only nearest-neighbor sites are di-

rectly coupled). As we mentioned above, the kicked rotor can be written in this form,

where the lattice describes the ladder in momentum space, and so this spatial-diffusion

picture describes the momentum transport in the kicked rotor. This theory has been jus-
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Figure 4.22: Comparison of the diffusion theory in Eqs. (4.61-4.63) to the experimental

momentum distribution evolution, for a case driven by 200% amplitude noise. The

experimental distributions for K = 11.2, k̄ = 2.08, and times of 30, 40, 50, 60, and
70 kicks are shown as solid lines, and the simultaneous best fit to the tails of all the
distributions is shown as dashed lines. The 70 kick cases are highlighted in bold. The
fitted exponents here are γ = 2.03± 0.14 and β = 0.51± 0.03, consistent with normal
(classical) diffusion.
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tified on the basis of numerical simulations in a variety of systems, as well as a general

theoretical argument based on a stationary-phase approximation in the coarse-grained

generalized master equation [214], and is valid asymptotically in the tails of the distri-

butions at long times.

This theory makes sense in several situations that we have already discussed,

such as exponential localization (γ = 1, β = 0), noise-induced (classical-like) diffusion

(γ = 2, β = 1/2), and ballistic transport (γ → ∞, β → 1). What is more interest-

ing, though, is that the universal relation should also hold in the intermediate cases of

“quantum anomalous diffusion.” Since we have observed a case of quantum transport

(the behavior at the peaks of the diffusion curves, as in Fig. 4.11) that does not fall
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Figure 4.23: Comparison of the diffusion theory in Eqs. (4.61-4.63) to the experimental

momentum distribution evolution, for the case influenced by classical anomalous trans-

port. The experimental distributions for K = 8.4, k̄ = 2.08, and times of 30, 40, 50,
60, and 70 kicks are shown as solid lines, and the simultaneous best fit to the tails of all
the distributions is shown as dashed lines. The 70 kick cases are highlighted in bold.

The fitted exponents here are γ = 1.48 ± 0.16 and β = 0.32 ± 0.07, consistent with
quantum anomalous diffusion.
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cleanly in any of the extreme cases, it is interesting to use this theory to study this case.

To compare the theory with the experimental results, we have performed fits

of the distributions (4.61) to experimental distributions at 30, 40, 50, 60, and 70 kicks.

To focus on the asymptotic behavior, we excluded the data at the earlier times (0, 10,

and 20 kicks), and the center portions of the data (bounded by |p/2�kL| ∼ 15) were

also excluded. The distributions were likewise truncated outside |p/2�kL| ∼ 70 to

exclude the regions of poor signal-to-noise ratio that might have skewed the fits. All the

distributions for a given case were fit simultaneously, using a common fitting exponent

γ . The scaling relation (4.62) was enforced by the constraint

w(t) = w0 + αtβ , (4.65)

where w0 and α are fitting parameters, and β was constrained by the relation (4.63).

In the fit, each distribution was convolved with the initial momentum distribution and

then corrected for the known response of the detection system (i.e., the nonunifor-

mity of the Gaussian imaging laser beams). To account for shot-to-shot variations in

the backgrounds of the CCD camera photographs, it was necessary to include the verti-

cal offsets and the amplitudes of the distributions as fitting parameters. The fits were

stabilized by constraining vertical offsets to a two-parameter linear model and the ampli-

tudes to a three-parameter quadratic model; these constraints were justified on physical

grounds and on the basis of fits where these parameters were treated independently.

The other effects discussed in Section 4.6.1 were not explicitly accounted for, and thus

influenced the vales of the fitted parameters. In order to emphasize the tails of the

distribution during the fit, the logarithms of the data were computed before being sent

to the Marquardt-Levenberg fitting routine. The uncertainties quoted here primarily

reflect the sensitivity of the fits to the choice of cutoff locations.

We have applied this fit to three sets of data. The first corresponds to expo-

nential localization (Fig. 4.21), where the fitted exponents were γ = 1.06 ± 0.19 and

β = 0.06±0.17. These values are consistent with the expected values. The second case
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is the strongest case (200%) of amplitude noise that we considered above (Fig. 4.22),

where the fitted values of γ = 2.03± 0.14 and β = 0.51± 0.03 are also consistent with

the expected values for regular diffusion. Finally, in the regime of classical anomalous

diffusion (Fig. 4.23), the fitted values were γ = 1.48± 0.16 and β = 0.32± 0.07, in-

dicating intermediate behavior of quantum anomalous diffusion. In all three cases, the

tails of the experimental distributions match very well with the fitted distributions.

4.8 Calculation of the Correlations

We will now run through the calculation of the correlations that we have used in this

chapter. These correlations were calculated using probabilistic methods [254], includ-

ing an elegant path-summation method [255], but here we will follow the direct ap-

proach used by Shepelyansky [275] for calculating the quantum correlations.

4.8.1 Classical Correlations

Beginning with the generalized standard map,

pn+1 = pn +Kn sinxn
qn+1 = qn + pn+1 ,

(4.66)

which allows for different kick strengths on each iteration, we wish to calculate the

correlation function

Cn := 〈K0 sinx0Kn sinxn〉, (4.67)

where we will take the average over the initial distribution to be uniform over phase

space. To evaluate this function, we need to calculate the exponentials eixm of the

iterated coordinates, in view of the form

Cn = K0Kn
〈
eix0eixn − eix0e−ixn

〉
+ c.c. (4.68)

of the correlation functions.

We will proceed by calculating the first few correlations before generalizing to
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the arbitrary case. If we use the generating function for the Bessel functions Jn(x),

exp
[(
t− 1

t

)
z

2

]
=
∑
s

Js(z)tn , (4.69)

we can let t = exp(ix) and z = K to obtain

exp(iK sinx) =
∑
s

Js(K)eisx . (4.70)

This relation allows the evaluation of the first iterated exponential,

eix1 = exp[i(x0 + p0 +K0 sinx0)]

=
∑
s0

Js0(K0)ei(s0+1)x0eip0 .
(4.71)

We can iterate this procedure to obtain the next two exponentials. After reversing the

order of the indices, we obtain

eix2 =
∑
s0,s1

Js0[K1]Js1 [K0(s0 + 2)]ei(s1+s0+1)x0ei(s0+2)p0

eix3 =
∑
s0,s1,s2

Js0 [K2]Js1[K1(s0 + 2)]Js2[K0(2s0 + s1 + 3)]

× ei(s2+s1+s0+1)x0ei(2s0+s1+3)p0

(4.72)

At this stage the pattern of the iteration is apparent. We can define the recurrence

relations

α0 = s0 + 1
αn+1 = αn + sn+1

(4.73)

and

β0 = 1 + α0
βn+1 = βn + αn ,

(4.74)

and then write the nth iterated exponential as

eixn =
∑

s0···sn−1

Js0(Kn−1β0)Js1(Kn−2β1) · · ·Jsn−1(K0βn−1)eiαn−1x0eiβn−1p0 . (4.75)

Now it is straightforward to evaluate the correlations (4.67), as the phase-space averages

amount to projections into a Fourier basis, with the general result

Cn =
K0Kn
2

∑
s0···sn−1

Js0(Kn−1β0)Js1(Kn−2β1) · · ·Jsn−1(K0βn−1)

× (δαn−1,1 − δαn−1,−1)δβn−1,0 ,

(4.76)
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where δn,n′ is the Kronecker symbol. Thus, the first few correlations evaluate to

C0 =
K2

0

2

C1 = 0

C2 = −K0K2

2
J2(K1)

C3 =
K0K3

2
[J3(K1)J3(K2)− J1(K1)J1(K2)]

C4 =
K0K4

2
[J2(K1)J2(K3) +O(K−3/2)] ,

(4.77)

where K is the statistical average of the Kn. For the normal standard map, Kn = K

for all n, and inserting these correlations into Eq. (4.20), we recover the diffusion rate

(4.24). On the other hand, for amplitude noise, it is appropriate to average the Kn over

their probability distributions, as in (4.28). Doing so, we recover the noise-modified dif-

fusion result (4.29). Notice that for the case of uniformly distributed amplitude noise,

Eq. (4.29) can be integrated analytically, with the somewhat unenlightening result,

D(K, δKp−p) =
K2

4
+
δK2

p−p
48

+
K2

2

{
− J2(K, δKp−p) + J 2

2 (K, δKp−p)

+
4

δKp−p
[J2(K+)− J2(K−)]2

− 4
δKp−p

[J0(K+)− J0(K−)][J2(K+)− J2(K−)]
}
,

(4.78)

where K± := K ± δKp−p/2,

J2(K, δKp−p) =
1

δKp−p

{
K+ J0(K+)−K− J0(K−)− 2[J1(K+)− J1(K−)]

− π
2
[J0(K+)H1(K+)− J1(K+)H0(K+)]

+
π

2
[J0(K−)H1(K−)− J1(K−)H0(K−)]

}
,

(4.79)

and the Hn(x) are the Struve functions of order n.
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4.8.2 Quantum Correlations

The calculation of the quantum correlations follows along similar lines to the classical

calculation, but is somewhat more complex. The derivation here follows the work of

Shepelyansky [275, 276]. The goal here is to calculate the (symmetrized) quantum

correlation function

Cq,n =
K0Kn
2

〈ψ0|(sinxn sinx0 + sinx0 sinxn)|ψ0〉 , (4.80)

which is averaged with respect to the initial state |ψ0〉. The coordinates xn and pn here

are Heisenberg-picture operators, which obey equations formally equivalent to the clas-

sical standard map, as we have indicated above. The initial state is again approximately

uniform over phase space, so that

〈ψ0|eimx0einp0 |ψ0〉 = δm,0δn,0 . (4.81)

We begin as before, calculating the first iterated exponential

eix1 = ei(x0+p0+K0 sinx0) = exp
[
−p0 + ix0 +

K0

2
eix0 − K0

2
e−ix0

]
. (4.82)

To factor this exponential, we use two special cases of the Baker–Campbell–Hausdorff

relation [279]. The first is

exp(A+B) = exp
(
B
ec − 1
c

)
exp(A) (4.83)

for operators A and B such that [A,B] = cB. The second case is

exp(A+ B) = exp(A) exp(B) exp
(
−1
2
[A,B]

)
= exp(B) exp(A) exp

(
1
2
[A,B]

)
,

(4.84)

if [A, [A,B]] = [B, [A,B]] = 0. After factorization, the result is

eix1 = exp
(
i
2K0

k̄
sin(k̄/2) sin(x0 + k̄/2)

)
eix0eip0eik̄/2 . (4.85)

We can then apply the identity (4.70), with the result

eix1 =
∑
s0

Js0(Kq,0) exp
[
i
k̄

2
(s0 + 1)

]
ei(s0+1)x0eip0 , (4.86)
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where Kq,0 := K0 sin(k̄/2)/(k̄/2). The general case is then obtained by iterating this

relation and then normally ordering the operators (i.e., so that all the p0 are on the right).

Shepelyansky’s result is

eixn =
∑

s0···sn−1

Js0(Kq,n−1β0)Js1(Kq,n−2β1) · · ·Jsn−1(Kq,0βn−1)eiγn1eiαn−1x0eiβn−1p0 ,

(4.87)

where the functions αn and βn are defined as before, and we have defined an additional

function by the relations

γ0 =
k̄

2
(s0 + 1)

γn+1 = γn +
k̄

2
sn(αn + βn) +

k̄

2
α2n .

(4.88)

We can then define the function

R(n, r) :=
1
2
〈ψ0|[exp(−irx0) exp(ixn) + exp(ixn) exp(−irx0)]|ψ0〉

=
1
2

∑
s0···sn−1

Js0(Kq,n−1β0)Js1(Kq,n−2β1) · · ·Jsn−1(Kq,0βn−1)

× (1 + e−iβn−1k̄q)eiγn1δαn−1,q δβn−1,0 ,

(4.89)

in terms of which we can write the correlation function as

Cq,n =
K0Kn
4

[R(n,−1)− R(n, 1)] + c.c. . (4.90)

The first few of these quantum correlations evaluate to

Cq,0 =
K2

0

2

Cq,1 = 0

Cq,2 = −K0K2

2
J2(Kq,1)

Cq,3 =
K0K3

2
[J3(Kq,1)J3(Kq,2)− J1(Kq,1)J1(Kq,2)]

Cq,4 =
K0K4

2
[J2(Kq,1)J2(Kq,3) +O(K−3/2q )] ,

(4.91)
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Hence, we see that the first few quantum correlations have essentially the same form

as the classical correlations in Eqs. (4.77), but with the quantum scaling factor applied

to the arguments of the Bessel functions. The diffusion-rate results in the case of the

normal quantum kicked rotor (4.47) and the amplitude-noise case (4.49) then proceed

as in the classical case.



Chapter 5

Experimental Apparatus II

5.1 Overview

In this chapter we discuss several modifications to the experimental apparatus described

in Chapter 3. These improvements were necessary to prepare localized atomic wave

packets in phase space for the experiments in Chapter 6. The first step towards such

localized initial states is further cooling of the atoms beyond what is possible in a typi-

cal MOT. We accomplished this additional cooling in a three-dimensional, far-detuned

optical lattice, as we discuss in Section 5.2. Further velocity selection well below the

recoil limit was accomplished using two-photon, stimulated Raman transitions. We will

examine the theory of stimulated Raman transitions as well as their experimental im-

plementation in Section 5.3. It was also necessary to have control over the spatial phase

of the optical lattice, so that the wave packet could be shifted to various initial loca-

tions in phase space. This spatial control was accomplished through an electro-optic

phase modulator placed before the standing-wave retroreflector, as described in Sec-

tion 5.4. Finally, we trace through the entire state-preparation sequence, using all these

atom-optics tools, in Section 5.5, and we discuss the calibration of the optical-lattice

potential in the modified setup in Section 5.6.

5.2 Cooling in a Three-Dimensional Optical Lattice

Using the standard techniques of cooling and trapping in a MOT, as described in Chap-

ter 3, we were limited to temperatures on the order of 10 µK for the initial conditions

162
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of the experiment. It is desirable, however, to have much lower temperatures for the

initial conditions, especially looking towards experiments with minimum-uncertainty

wave packets in phase space. Although it has been shown that temperatures below 3 µK

can be achieved in cesium using a standard six-beam MOT [280], our MOT tempera-

tures were substantially higher due to residual magnetic fields from eddy currents in the

stainless steel vacuum chamber after the field coils were switched off. One successful

approach to achieving additional cooling beyond that of a standard MOT is cooling in

a three-dimensional optical lattice. Several methods for cooling in three-dimensional

optical lattices have been demonstrated [281–284], but the method implemented here

was based on the setup developed by the group of David Weiss [285–289].

The 3D optical lattice was formed by five beams, as illustrated in Fig. 5.1. Three

of the beams were in the horizontal plane; two of these beams counterpropagate, and

the third is perpendicular to the other two. These beams formed a two-dimensional in-

terference pattern, consisting of a lattice of spots with maximum intensity. This pattern

Figure 5.1: Configuration of the beams forming the three-dimensional lattice for addi-

tional cooling of the atoms. Five total beams form the lattice, and the directions of the

linear polarizations of each beam are indicated. Each of the beams is orthogonal to or

counterpropagating with respect to the other beams. The two vertical beams are decou-

pled from the three horizontal beams by an 80MHz frequency shift. (Graphics rendered

by W. H. Oskay.)
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thus forms confining potential wells for red-detuned light, but not for blue-detuned

light, where the intensity maxima form scattering barriers for the atoms, resembling

the Lorentz gas. The use of three beams for this two-dimensional lattice is important,

in that using the minimum number of beams to determine a lattice ensures that the

structure of the interference pattern will be stable to phase perturbations [290]. In the

original implementation of this lattice [286, 287], four beams (in two counterpropagat-

ing pairs) were used to form the horizontal part of the lattice. Because the interference

pattern could change its periodicity by a factor of two as the phase of one of the beams

varied, the authors in that experiment implemented interferometric stabilization of the

beam phases [289]. In the realization here, we simply omitted one of the four beams to

gain relatively easy stability at the expense of lattice intensity. The omission of one of

the beams was important in allowing long-term storage of the atoms in the lattice, as we

describe below, as well as repeatable atomic temperatures.

The other two beams in the 3D lattice counterpropagated in the vertical direc-

tion, and they were approximately perpendicular to the three horizontal beams. These

beams were offset in frequency by 80MHz with respect to the horizontal beams. In this

arrangement, the interferences with the horizontal lattice oscillate on a time scale that

is very fast compared to atomic motion time scales, and thus it is appropriate to regard

the vertical beams as decoupled from the horizontal beams in terms of analyzing the

interference pattern. Hence, the vertical beams produced a normal 1D standing-wave

lattice, which confined the atoms vertically, and the three horizontal beams confined

the atoms in the other two dimensions.

Cooling in 3D lattices proceeds by applying the usual MOT beams to the atoms

in the lattice. There are several mechanisms by which lattice cooling achieves much

lower temperatures than a standard MOT. The first mechanism is that of “adiabatic

cooling” [181], where the application of the lattice acts as an effective refrigerator cy-

cle for cooling the atoms. When the atoms are loaded into the lattice from the initial

MOT, they are heated by the increasing potential in order to gain local confinement in
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the lattice wells. Laser cooling by the MOT beams proceeds as usual, cooling the atoms

from the heated temperature back down to normal MOT temperatures. When the lat-

tice is then adiabatically shut off (together with the MOT beams), the temperature is

further lowered at the expense of local confinement, in which we are not necessarily

interested. An important feature of the lattice configuration implemented here is that

because all the light is linearly polarized and far-detuned, the magnetic (Zeeman) sub-

levels all experience the same energy shift due to the light, and sub-Doppler cooling

mechanisms that rely on such degenerate level structure (polarization-gradient cooling

[291]) proceed as in the free-MOT case. This mechanism was especially important for

the setup here, as the atoms could be stored in the lattice until after the magnetic fields

decayed, allowing for much better polarization-gradient cooling than we could achieve in

the standard MOT. It was also important to extinguish the MOT beams adiabatically, as

they likewise produced an optical lattice due to the six-beam interference. The second

mechanism for better cooling in the lattice relates to suppression of the absorption of

rescattered light in the MOT. The second-hand absorption of photons that have already

been spontaneously scattered by MOT atoms, or “radiation trapping,” leads to temper-

ature and density limitations in free-space MOTs [292, 293]. These rescattering events

are particularly problematic in that they may be much more likely to be absorbed than

regular MOT photons, because their cross section for absorption is independent of de-

tuning due to the possibility of taking part in a two-photon stimulated scattering event

[288, 294]. In the festina lente regime [294], however, where the photon scattering rate

(due to lattice photons, as we will mention below) is small compared to the trap oscilla-

tion frequency (and thus the vibrational-level splitting), the recoil heating due to these

reabsorption events is suppressed [288, 294]. This is because most of the rescattered

photons in this regime are scattered elastically in the tight-confinement (Lamb-Dicke)

limit, and the probability of an atom changing its vibrational level by scattering such a

rescattered photon is small. This suppression of rescatter heating is further enhanced

by a third mechanism in lattice cooling, where the cooling proceeds in analogy to a dark
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MOT [295]. This mechanism obtains because the normal repumping light used in the

regular MOT is extinguished after the initial cooling phase in the lattice. Most of the

atoms are thus in the dark (F = 3) hyperfine level, and so the cooling light only affects

a small fraction of the atoms at a given time. The far-detuned lattice light provides slow

repumping to the trapping transition. Thus, the lifetime for a given vibrational level is

set by the scattering rate of optical-lattice light, and not the near-resonant MOT light.

Finally, cooling in the lattice has the additional benefit that atoms are separated in in-

dividual lattice sites, and thus light-assisted collision losses and other collisional effects

are suppressed, resulting in a nearly density-independent cooling rate [285].

For the realization here, the light was produced by the same Ti:sapphire laser

that provided the 1D time-dependent interaction lattice. An 80MHz AOM picked off

light for the 3D lattice just before the similar pickoff AOM for the 1D lattice light. An-

other 80 MHz AOM split this beam into two parts, the first order (+80 MHz) having

about 1/3 of the light, with the remainder in the unshifted zeroth order. These two

beams were spatially filtered by focusing through 50 µm diameter pinholes. The up-

shifted light formed the vertical lattice beams, while the unshifted portion was further

split in two with a half-wave plate and a polarizing beam-splitter cube to form the hor-

izontal beams. These three beams were all focused onto retroreflecting mirrors on the

opposite sides of the chamber so that the beam waist w0 was 500 µm at their inter-

section; one of the horizontal, retroreflected beams was blocked to form the five-beam

geometry described above. Each of the beams had approximately 90 mW of power. The

lattice had a typical detuning of 50 GHz to the red of the F = 3 −→ F ′ transition

multiplet (or 40 GHz to the red of F = 4 −→ F ′), leading to an oscillation frequency in

the vertical direction of around 170 kHz (in the harmonic-oscillator approximation) and

a scattering rate of around 1 kHz at beam center.

The procedure for lattice cooling began with about 5 s of loading the regular

MOT from the background vapor. The optical molasses light intensity was then low-

ered to 60% of the loading value, and the detuning was increased to 37MHz (from the
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13 MHz used during the loading phase). At the same time, the 3D lattice was turned

on adiabatically to minimize the heating of the atoms. The intensity followed the tem-

poral profile I(t) = Imax(1 − t/τ)−2 (for −800 µs < t < 0) [281, 287], where the

time constant τ was 30 µs. During this lattice-loading phase, the anti-Helmholtz fields

and repump light were both left on to encourage rapid binding of the atoms to the 3D

lattice. After a total of 22 ms in this loading phase, the magnetic fields and repump

light were extinguished, and the molasses light was raised back up to 100% intensity.

The 3D lattice was maintained at full intensity during the subsequent 298 ms storage

time, but the molasses light was ramped linearly down to 77% intensity by the end of

this period. This long storage time was sufficient to allow the magnetic fields to decay

mostly away (to 70 mG or better, when compensated properly by the Helmholtz coils),

although a slowly varying magnetic field was still detectable using the stimulated Raman

spectroscopy described below. Then the MOT and 3D lattice beams were ramped down

adiabatically according to a similar profile, I(t) = I0(1 + t/τ)−2 (with the same time

constant), over 800 µs. The molasses light began its ramping down about 20 µs before

the 3D lattice beams, giving the optimum final temperature.

This lattice-cooling procedure led to an atomic population in the F = 3 level

with a 1D temperature (in the horizontal direction) of 400 nK, or σp/2�kL = 0.7. Be-

tween 50% and 90% of the atoms remained trapped in the lattice during the cooling

cycle, depending sensitively on how well the lattice was aligned. The vertical tempera-

ture of 500 nK (σp/2�kL = 0.8) was somewhat higher; the temperature could be made

more isotropic by changing the relative beam powers, but at the expense of the horizon-

tal temperature, which was the only important temperature for the experiments here.

The lattice worked well over detunings of 25-70 GHz (from F = 3 −→ F ′); for closer

detunings the final temperature began to rise, and at larger detunings, the fraction re-

tained in the lattice dropped off.

For some experiments, it was necessary to prepare the atoms in the F = 4 hy-

perfine level. This could be conveniently achieved by pulsing on the repumping light
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for 100 µs after the lattice and molasses fields were extinguished, at the expense of

temperature (the final temperature was typically 700 nK after repumping). To imple-

ment stimulated Raman velocity selection, as we discuss in the next section, further

optical pumping to the F = 4, mF = 0 Zeeman sublevel was necessary, as we discuss in

Section 5.3.5.

5.3 Stimulated Raman Velocity Selection

Now we consider the implementation of two-photon, stimulated Raman transitions in

cesium for subrecoil (i.e., smaller than the single-photon momentum) velocity selection.

After giving a general overview of the theory behind stimulated Raman transitions and

velocity selection, we will give the details of our implementation as well as a discussion

of optical pumping and internal state selection necessary for a clean velocity-selection

method.

5.3.1 Stimulated Raman Transitions: General Theory

We consider the atomic energy level structure shown in Fig. 5.2, where two ground states

|g1,2〉 are coupled to a manifold of excited states |en〉 by two optical fields. Our goal is to

show that under suitable conditions, the atomic population can be driven between the

ground states as in a two-level system. We restrict our attention to the case where the

fields propagate along a common axis. In the counterpropagating case, the combined

optical field has the form

E(x, t) = ε̂1E01 cos(k1x− ωL1t) + ε̂2E02 cos(k2x+ ωL2t)

= E(+)(x, t) +E(−)(x, t) ,
(5.1)

where E(±)(x, t) are the positive and negative rotating components of the field, given

by

E(±)
1 (x, t) =

1
2

(
ε̂1E01e

±ik1xe∓iωL1t + ε̂2E02e
∓ik2xe∓iωL2t

)
, (5.2)
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and ε̂1,2 are the unit polarization vectors of the two fields. The results that we will derive

also apply to the copropagating case as well upon the substitution k2 → −k2.

The free atomic Hamiltonian can then be written

HA =
p2

2m
+ �ωg1|g1〉〈g1|+ �ωg2|g2〉〈g2|+

∑
n

�ωen |en〉〈en| , (5.3)

and the atom-field interaction Hamiltonian is

HAF = −d(+) · E(−) − d(−) · E(+) , (5.4)

where we have made the rotating-wave approximation, we have assumed that ω21 :=

ωg2 − ωg1 � ωegj
:= max{ωen} − ωgj , and we have in mind that the |en〉 are nearly

degenerate. Additionally, we have decomposed the dipole operator d into its positive-

and negative-rotating components,

d = d(+) + d(−)

=
∑
n

(a1n〈en|d|g1〉+ a2n〈en|d|g2〉) +
∑
n

(a†1n〈en|d|g1〉+ a
†
2n〈en|d|g2〉) ,

(5.5)

}

weg1

weg2

de
n

w21

wL1

wL2

|e�ñ

|gªñ

|gÁñ

Figure 5.2: Energy level diagram for stimulated Raman transitions. Each ground level

|gj〉 is coupled to the excited-state manifold |en〉 via two laser fields, which are tuned so
that their detunings from the excited-state manifold are nearly the same.
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where ajn := |gj〉〈en| is an annihilation operator. Substituting (5.5) into (5.4), we find

HAF = −
∑
n

1
2
〈en|ε̂1 · d|g1〉E01(a1neik1xe−iωL1t + a

†
1ne
−ik1xeiωL1t)

−
∑
n

1
2
〈en|ε̂2 · d|g2〉E02(a1ne−ik2xe−iωL2t + a

†
2ne

ik2xeiωL2t) .
(5.6)

In writing this expression, we have assumed the detunings ∆Lj := ωLj −ωegj
are nearly

equal; hence, to make this problem more tractable, we assume that the field Ej couples

only |gj〉 to the |en〉. After solving this problem we will treat the cross-couplings as a

perturbation to our solutions. If we define the Rabi frequency

Ωjkn :=
−〈en|ε̂k · d|gj〉E0k

�
, (5.7)

which describes strength of the coupling from level |gj〉 through field Ek to level |en〉,

we arrive at

HAF =
∑
n

�Ω11n

2
(a1neik1xe−iωL1t + a

†
1ne
−ik1xeiωL1t)

+
∑
n

�Ω22n

2
(a1ne−ik2xe−iωL2t + a

†
2ne

ik2xeiωL2t)
(5.8)

as a slightly more compact form for the interaction Hamiltonian.

Now, before examining the equations of motion, we transform the ground states

into the rotating frame of the laser field, as in Chapter 2:

|g̃j〉 := e−iωLjt|gj〉

Ẽ
(±)
k := e±iωLktE

(±)
k .

(5.9)

Also, for concreteness, we will takemax{ωen} = 0. Then the rotating-frame, free-atom

Hamiltonian is

H̃A =
p2

2m
+ �∆L1|g̃1〉〈g̃1|+ �∆L2|g̃2〉〈g̃2|+

∑
n

�δen |en〉〈en| , (5.10)

where δen := ωen − max{ωen} (i.e., δen ≤ 0). The interaction Hamiltonian in the
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rotating frame is

H̃AF = −d̃(+) · Ẽ(−) − d̃(−) · Ẽ(+)

=
∑
n

�Ω11n

2
(ã1neik1x + ã

†
1ne
−ik1x) +

∑
n

�Ω22n

2
(ã1ne−ik2x + ã

†
2ne

ik2x) ,

(5.11)

where the annihilation operator ãjn is defined in the same way as ajn, but with |gj〉

replaced by |g̃j〉.

Turning to the equations of motion, we will manifestly neglect spontaneous

emission, since ∆Lj � Γ, where Γ is the decay rate of |en〉, by using a Schrödinger-

equation description of the atomic evolution. Then we have

i�∂t|ψ〉 = (H̃A + H̃AF)|ψ〉 , (5.12)

where the state vector can be factored into external and internal components as

|ψ〉 = |ψg1〉|g̃1〉+ |ψg2〉|g̃2〉+
∑
n

|ψen〉|en〉 . (5.13)

Then if ψα(x, t) := 〈x|ψα〉, we obtain the equations of motion

i�∂tψen =
p2

2m
ψen +

�Ω11n

2
e−ik1xψg1 +

�Ω22n

2
eik2xψg2 + �(δen −∆L)ψen

i�∂tψg1 =
p2

2m
ψg1 +

∑
n

�Ω11n

2
eik1xψen + �(∆L1 −∆L)ψg1

i�∂tψg2 =
p2

2m
ψg2 +

∑
n

�Ω22n

2
e−ik2xψen + �(∆L2 −∆L)ψg2 ,

(5.14)

where we have boosted all energies by −�∆L, with ∆L := (∆L1 +∆L2)/2 (i.e., we ap-

plied an overall phase of ei∆Lt to the state vector). Since we assume that |δen| � |∆L|

and |∆L2 − ∆L1| � |∆L|, it is clear that the ψen carry the fast time dependence at fre-

quencies of order |∆L| � Γ. We are interested in motion on timescales slow compared

to 1/Γ, and the fast oscillations are damped by coupling to the vacuum on timescales of

1/Γ, so we can adiabatically eliminate the ψen by making the approximation that they
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damp to equilibrium instantaneously (∂tψen = 0). Also, we use p2/2m � �|∆L|, with

the result,

ψen =
Ω11n

2(∆L − δen)
e−ik1xψg1 +

Ω22n

2(∆L − δen)
eik2xψg2 . (5.15)

Notice that in deriving this relation, it was important to choose the proper energy shift

−�∆L to minimize the natural rotation of the states that remain after the adiabatic

elimination; indeed, if the resonance condition that we will derive is satisfied, the two

ground states have no natural oscillatory time dependence. This procedure would be

much more clear in a density-matrix treatment (as in Section 2.4.1), where the oscil-

lating coherences would be eliminated, but this description is cumbersome due to the

number of energy levels in the problem. Using this relation in the remaining equations

of motion, we obtain two coupled equations of motion for the ground states,

i�∂tψg1 =
p2

2m
ψg1 + [�∆L1 + �ωAC1]ψg1 +

�ΩR
2
ei(k1+k2)xψg2

i�∂tψg2 =
p2

2m
ψg2 + [�∆L2 + �ωAC2]ψg2 +

�ΩR
2
e−i(k1+k2)xψg1 ,

(5.16)

where we have removed the energy shift of −�∆L. These equations are formally equiv-

alent to the equations of motion for a two level atom, with Rabi frequency

ΩR :=
∑
n

Ω11nΩ22n

2(∆L − δen)
(5.17)

and Stark shifts

ωACj :=
∑
n

Ω2
jjn

4(∆L − δen)
. (5.18)

These equations of motion are just the equations generated by the effective Raman

Hamiltonian

HR =
p2

2m
+ �(∆L1 + ωAC1)|g̃1〉〈g̃1|+ �(∆L2 + ωAC2)|g̃2〉〈g̃2|

+ �ΩR
(
aRe

i(k1+k2)x + a†Re−i(k1+k2)x
)
,

(5.19)

where the Raman annihilation operator is defined as aR := |g1〉〈g2|. Noting that the

operator exp(−ikx) is a momentum-shift operator, so that exp(−ikx)|p〉 = |p−�k〉 (and
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thus exp(−ikx)ψ(p) = ψ(p + �k), where ψ(p) := 〈p|ψ〉), it is clear from the form of

the effective Raman Hamiltonian that a transition from |g2〉 to |g1〉 is accompanied by a

kick to the left of two photon-recoil momenta, and the reverse transition is accompanied

by a kick to the right of two photon recoils. We can write out the coupled equations of

motion due to the Hamiltonian (5.19) more explicitly as

i�∂tψg1(p) =
[
p2

2m
+ �∆L1 + �ωAC1

]
ψg1(p) +

�ΩR
2
ψg2(p+ 2�kL)

i�∂tψg2(p+ 2�kL) =
[
(p+ 2�kL)2

2m
+ �∆L2 + �ωAC2

]
ψg2(p+ 2�kL) +

�ΩR
2
ψg1(p) ,

(5.20)

where 2kL := k1 + k2 . The resonance condition for this transition |p〉|g1〉 −→ |p +

2�kL〉|g2〉 is [
(p+ �kL)2

2m�
+∆L2 + ωAC2

]
−
[
p2

2m�
+∆L1 + ωAC1

]
= 0 , (5.21)

which can be rewritten as

4ωr

(
p+ �kL

�kL

)
+ (∆L2 −∆L1) + (ωAC2 − ωAC1) = 0 . (5.22)

Here, we have defined the recoil frequency as before by ωr := �k2L/2m = 2π · 2.0663

kHz for the cesium D2 transition. The first term is just the Doppler shift of the two

optical fields due to motion at the average of the upper and lower state momenta. In

the copropagating case, this term is typically negligible.

Finally, we account for the effects of the cross-couplings that we previously ig-

nored. The lifetimes of the two ground states are in practice extremely long, so that

the line width of the Raman transition is quite narrow, being limited only by the finite

interaction time. Since it is assumed that the Raman resonance condition (5.21) is ap-

proximately true, the Raman cross-coupling is much further away from resonance than

the intended coupling (typically several orders of magnitude in cesium), so this extra

Raman coupling can be neglected in a secondary rotating-wave approximation. How-

ever, the cross-couplings can induce additional ac Stark shifts of the ground levels. So,
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we simply modify (5.18) to include these extra shifts:

ωAC1 :=
∑
n

Ω2
11n

4(∆L − δen)
+
∑
n

Ω2
12n

4(∆L − δen − ω21)

ωAC2 :=
∑
n

Ω2
22n

4(∆L − δen)
+
∑
n

Ω2
21n

4(∆L − δen + ω21)
.

(5.23)

These additional Stark shifts may not in general be negligible compared to the original

Stark shifts.

We can also obtain an estimate of the spontaneous emission rate by using (5.15)

to write the total excited state population in terms of the density matrix elements:

Rsc = Γ
∑
n

ρenen

=
∑
n

ΓΩ2
11n

4(∆L − δen)2
ρg1g1 +

∑
n

ΓΩ2
22n

4(∆L − δen)2
ρg2g2

+
∑
n

ΓΩ11nΩ22n

4(∆L − δen)2
e−i2kLxρg1g2 +

∑
n

ΓΩ11nΩ22n

4(∆L − δen)2
ei2kLxρg2g1 .

(5.24)

Here, ραα is the population in state |α〉, with ρg1g1 + ρg2g2 � 1, and this result as-

sumes implicitly that ∆L1 ≈ ∆L2. The second two terms represent an enhancement or

suppression of spontaneous scattering due to atomic coherences; for example, the state

|ψ〉 = η(Ω22ne
ikLx|ψg1〉 − Ω11ne

−ikLx|ψg2〉) (5.25)

(where η is the appropriate normalization factor) is dark, since Rsc vanishes for this

state. However, this state is only dark if the cross-couplings can be ignored. More real-

istically, the scattering rate can be modeled as an incoherent sum over all the couplings

of the form (ΓΩ2/4∆2)ρgjgj , including other fields that are not directly involved in the

Raman transition (such as the EOM carrier field, discussed in Section 5.3.3).

5.3.2 Pulse-Shape Considerations

Since the velocity-selective Raman pulses are generally used to “tag” a subset of an

atomic distribution according to their momentum, it is important to consider the impact
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of the temporal pulse profile on the tagged distribution. The simplest pulse profile is

the square profile, where the light is turned on at a constant intensity for some duration.

Assuming that the atoms are all initially in the same internal atomic state, the tagging

process is described by the solution of the optical Bloch equations for the excited state

population of a two-level atom with Rabi frequency ΩR, Raman detuning ∆R (given by

the left-hand side of Eq. (5.22)), and with all initial population in the ground Raman

state:

ρee(t) =
Ω2
R

Ω2
R +∆2

R

sin2
(
1
2

√
(Ω2

R +∆2
R) t

)
. (5.26)

From Eq. (5.22), we see that a detuning of ∆R = 4ωr corresponds to a momentum shift

of �kL. This lineshape has wings that decay relatively slowly, with a series of locations

where the lineshape goes to zero. The locations of the zeros for an interaction time of

δt is given by

∆R =

√
4n2π2

(δt)2
−Ω2

R (5.27)

for positive integer n. This relation simplifies for specific interaction times; for example,

for a “π-pulse” of duration δt = π/ΩR, the locations are at ∆R = ΩR
√
4n2 − 1, and for

a π/2-pulse of duration δt = π/(2ΩR), the locations are ∆R = ΩR
√
16n2 − 1. These

zeros were important in a previous implementation of Raman cooling [296, 297], where

the first zero of the profile (5.26) was placed at zero momentum to form a dark interval

where atoms would accumulate. The square-pulse excitation lineshape is plotted in

Fig. 5.3 for a π/2-pulse, a π-pulse, and a 2π-pulse. Note that for the important case of

the π-pulse, the central population lobe is characterized by a half width at half maximum

of 0.799 · Ω.

It is also important to note that because one typically excites a range of detun-

ings with a velocity-selective Raman pulse, the transferred population does not undergo

simple sinusoidal Rabi oscillations. For a square pulse, the excitation profile (5.26) must

be averaged over the atomic velocity distribution. In the limit of a broad velocity distri-
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bution, the excited population is proportional to∫ ∞
−∞
ρee(t)d∆R =

πΩR
2
Ji0(ΩRt)

=
πΩ2

Rt

2

{
J0(ΩRt) +

π

2
[J1(ΩRt)H0(ΩRt)− J0(ΩRt)H1(ΩRt)]

}
,

(5.28)

where the Jn(x) are ordinary Bessel functions, the Hn(x) are Struve functions, and

Jin(x) :=
∫ x
0 Jn(x

′)dx′. The population in this case still oscillates as a function of time,

but with some damping. This function is plotted in Fig. 5.4. Notice that for short times,

the function (5.28) reduces to (π/2)Ω2
Rt + O(t2), so that one can associate a nonzero

transition rate, proportional to Ω2
R (which is in turn proportional to the product of the

laser intensities), as long as ΩRt� 1.

An alternative approach, based on the Blackman pulse profile, was used by the

Chu group for Raman cooling [298, 299]. This profile, when normalized to have unit
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Figure 5.3: Plot of Eq. (5.26), showing excited state population as a function of the

detuning from resonance, for three pulse durations: π/2-pulse, corresponding to an in-
teraction time of δt = π/(2ΩR), (solid line); a π-pulse, corresponding to δt = π/ΩR
(dotted line); and a 2π-pulse, for δt = 2π/ΩR (dashed line).
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area, can be written as

fB(t) =
1

0.42τ
[−0.5 cos(2πt/τ) + 0.08 cos(4πt/τ) + 0.42] , (5.29)

where τ is the duration (support) of the pulse. The Blackman profile has the property

that the tails in the Fourier spectrum are suppressed relative to the square pulse. Hence,

the Raman excitation spectrum of the Blackman pulse falls off much more sharply than

the corresponding square-pulse spectrum, as shown in Fig. 5.5. However, the implemen-

tation of Blackman pulses in a setup where the Raman beams induce an ac Stark shift

of the transition is more complicated, since the Raman frequency must be chirped to

match the Stark shift in order to get good frequency resolution. (For an 800 µs, square

π-pulse, the Raman transition was Stark shifted by around −2 kHz in this setup, which

is larger than the 500 Hz effective half-width of the selected momentum group.) Due

to the frequency stability issues of the RF electronics discussed below, the experiments

in this dissertation used only square Raman pulses.
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Figure 5.4: Plot of Eq. (5.28), showing excited state population evolution resulting from

a square, velocity-selective Raman pulse in a broad atomic velocity distribution. The

location of the first minimum is determined by the second zero of J0(x), which is at

ΩRt ≈ 0.879 · 2π.
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5.3.3 Implementation of Stimulated Raman Transitions

The basic hardware setup for implementing stimulated Raman transitions is shown in

Fig. 5.6. The Ti:sapphire laser that provided the light for the 1D and 3D optical lattices

also provided the light to drive the Raman transitions. A 40MHz AOM, placed after the

two AOMs for the optical lattices and before the wave meter and Fabry-Perot cavity, was

used to to pick off the Raman light from the main Ti:sapphire beam line.

The method used to generate the two laser frequencies to drive cesium Raman

transitions is similar to the implementation in [300]. The first-order beam from the

Raman AOM was split into two components by a 50% beam splitter (or more precisely,

a half-wave plate with a polarizing beam-splitter cube). One of the split beams was sent

through a New Focus model 4851, 9.28 GHz electro-optic phase modulator (EOM),

which put sidebands at ±9.28 GHz on the beam. The driving signal was derived from

the 10 MHz output of a highly stable and accurate EFRATOM LPRO rubidium oscil-
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Figure 5.5: Plot of the excitation profile for a Blackman pulse (solid line) and for a square

pulse (dotted line). Both pulses are π-pulses and have the same total temporal duration

(and hence the same average Rabi frequency Ω̄R).
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lator, which was quadrupled in frequency and then converted to 9.28 GHz by a Delphi

Components, Inc. dielectric resonant oscillator (DRO). The DRO output was amplified

by a QuinStar Technology, Inc. model CPA09092535-1 solid state amplifier, which was

specified to have 25 dB of gain (with 35 dBm maximum output power) at 9.28 GHz.

The amplifier output was protected by a Sierra Microwave Technology model SMC-

8010 microwave circulator, so that any back-reflections would be terminated into a 50 Ω

resistive load rather than the amplifier output port. The signal was transferred to the

phase modulator through a 1 m long, Times Microwave Systems LMR-400 cable, which

has low loss at 9.28 GHz compared to standard semirigid (RG-402) coaxial wire. The

EOM converted about 7% of the carrier into each of the sidebands. The beam was then

spatially filtered by focusing through a 40 µm pinhole, converted to circular polarization

From
Ti:sapphire

40 MHz
AOM

9.28 GHz EOM 44 MHz
AOM

44 MHz
AOM

l/4

l/4

insert mirror and beamsplitter
for copropagating mode

(AOMs have common source
at 43.684115MHz + d, and are
indepedently switchable; they
shift the light frequency in

opposite directions.
d = 0 corresponds to resonance
in the absence of Doppler or

level shifts.)

to l-meter and Fabry-Perot cavity

n , locked to n + n × 1.5 GHz - 195MHz,
where n is the (F = 4® F' = 5)

resonance frequency

TS 45

45

n = n + 40 MHz

n ,

n ± 9.28 GHz

n ± 87.36823 MHz ± 2dc

c

c

c

TS

(BS, T = 50%)

STOP

STOP

80 MHz
AOM

for 1D
interaction potential

n + 80 MHzTS

80 MHz
AOM

for 3D lattice
n + 80 MHzTS

Figure 5.6: Optical layout for implementing stimulated Raman transitions with a high-

frequency electro-optic modulator (EOM). The EOM put 9.28 GHz sidebands on the
carrier frequency νc, and the counterpropagating beam was shifted up or down in fre-

quency by one of two acousto-optic modulators (AOMs), depending on the desired di-

rection of the photon momentum transfer. An extra mirror and beam splitter could be

inserted on kinematic mounts to convert the system to copropagating mode.
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by a zero-order half-wave plate, and sent into the chamber. This (collimated) beam had

a waist parameter w0 of around 2 mm as it entered the chamber.

The other beam propagated through two 44MHz tunable AOMs. These AOMs

were arranged in a double-pass configuration, with one double-passing the +1 order and

the other using the −1 order. With this arrangement the output beam could be shifted

by±88MHz depending on which AOMwas switched on, with some tunability. The out-

put of the double-pass configuration was also sent into the vacuum chamber after spatial

filtering through a 35 µm pinhole. This beam also had a waist parameter w0 of around

2 mm in the chamber, and was likewise circularly polarized after passing through a zero-

order half-wave plate. The two beams propagated along nearly the same axis as the 1D

lattice (with about 1◦ of horizontal angular separation), to give velocity selectivity in the

dimension of interest. The idea behind this arrangement is that the AOM-shifted light

and one of the sidebands on the other beam provide the two frequencies to drive the

Raman transition. The AOM frequency shift was important to decouple all other pairs

of light, so that the other EOM sideband and the EOM carrier had no influence on the

atoms besides a Stark shift and some additional spontaneous scattering. The shift was

cn

n + 9.28 GHzc

n + 87.36823 MHz + 2dc

n + 9.28 GHzc

n - 9.28 GHzc

n - 87.36823 MHz - 2dc

n - 9.28 GHzc

cn

(a) (b)

F = 3

F = 4

F = 3

F = 4

Figure 5.7: Energy-level scheme in cesium for the optical setup in Fig. 5.6. The config-

uration shown in (a) is for the case when one of the double-passed AOMs shifted the

light up by 87 MHz, while case (b) is for the case where the light was shifted down by

87 MHz.
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particularly important in decoupling the carrier, which in velocity-selective mode would

form a standing wave with the counterpropagating beam. With the frequency shift, this

standing wave moved far too quickly (∼104 photon recoils) to have any effect on the

atomic motion. Since the ground-state splitting ω21 is exactly 2π · 9.192 631 770 GHz,

driving the AOMs at 43.684 115 MHz (which induces a shift of ± 87.368 230 MHz)

put the Raman transition directly on resonance in the absence of Stark, magnetic, or

Doppler shifts.

The tunable RF signal that drove the AOMs needed to be extremely stable,

and thus was derived from synthesized signal generators. In the original setup, the

signal from a Fluke 6080A/AN synthesizer, operating at 150 MHz, was doubled in fre-

quency by a Mini-Circuits FK-5 doubler. Since the synthesizer had an analog frequency-

modulation (FM) input which could change the frequency by up to ±1MHz, the dou-

bler effectively increased the “throw” of the synthesizer to ±2 MHz. The analog FM

input was controlled by a Stanford Research Systems DS345 arbitrary waveform synthe-

sizer, connected by a double-shielded coaxial cable to reduce noise contamination on

the FM signal. The doubled signal was mixed by a Mini-Circuits ZP-3LH mixer with

the output of a WaveTek model 2047 synthesizer, which operated at about 343.7MHz,

to obtain the difference frequency at 43.7MHz. The mixer output was then amplified

by an IntraAction model PA-4 power amplifier and then fed into the appropriate AOM.

The synthesizers were both slaved to the Rb oscillator mentioned above for extremely

good accuracy and stability, but the analog input of the Fluke unit caused the output

frequency to have long-term drifts (over the course of a day) at the kHz level, which is

at the same level as the Fourier width of the Raman selection pulse. Hence, this setup

was not suitable for a reliable Raman velocity selection solution, and so the Fluke unit

was replaced by a Hewlett-Packard model 8662A synthesizer. The HP unit was much

more stable, having drifts at the 100 Hz level over the course of a day, but also had a

much smaller FM range of ±25 kHz. So, the HP unit was more useful for Raman veloc-

ity selection, while the Fluke unit was more useful for wide-range sweeps (e.g., while
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looking for Raman signals initially or beginning to null out magnetic fields). It was also

useful to have rapid control of the Raman detuning to chirp the detuning during a pulse,

which improved the quality of the spectra in coarse spectral sweeps. For the Raman ve-

locity selection in the state-preparation sequence described below, the FM input on the

HP unit was disabled, and the Raman detuning was set by programming the HP unit via

the GPIB interface. In this mode, where the FM input was deselected, the RF system

had extremely good frequency stability, with a drift at the level of 1 Hz/day.

This configuration allows for two distinct possibilities for driving Raman transi-

tions. When the two beams are counterpropagating, the Raman transitions are velocity-

selective, as we argued in the previous section. By choosing which way the double-

passed beams are shifted, one also chooses the direction of momentum that the beams

impart to the atoms. This idea is illustrated in Fig. 5.7, which shows the optical fre-

quencies in the context of the energy levels of cesium. When the double-passed beam

is shifted up in frequency, it drives the F = 4 −→ F ′ part of the transition, while the

upper sideband on the EOM beam drives the F = 3 −→ F ′ part. The lower sideband

and the carrier are too far away from resonance to have a significant effect. When the

double-passed beam is shifted to the red, however, as in Fig. 5.7(b), the double-passed

beam drives the F = 3 −→ F ′ part of the Raman transition, while the lower sideband

of the EOM beam drives the F = 4 −→ F ′ part. The mutual detuning of the Raman

beams from resonance is now effectively 9 GHz larger, but the imparted momentum

for a given Raman transition is in the opposite direction. For the F = 3 −→ F = 4

Raman transition, the case of Fig. 5.7(a) corresponds to a leftward kick in Fig. 5.6, while

the case of Fig. 5.7(b) corresponds to a rightward kick. This dual-AOM arrangement

is useful for an implementation of stimulated Raman cooling, as we discuss briefly be-

low, although for the experiments in this dissertation, we only used one of the AOMs

(inducing a positive frequency shift) to drive velocity-selective transitions.

This setup could also be operated in copropagating mode by inserting a mir-

ror to deflect the phase-modulated beam after the spatial filter and inserting a 50%
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non-polarizing cube beam splitter to combine the two beams with the same polariza-

tion. This configuration was useful for nulling the background magnetic fields, as these

Raman transitions are much more efficient than in the counterpropagating case (since

atoms moving at all velocities can still undergo transitions), and the only energy shifts

are Stark and Zeeman shifts. By minimizing the splittings between the resonances due

to these copropagating-mode transitions, we could null the background fields to about

10mG, although we tolerated background fields at the 70mG level because of long-term

drifts in the field-control electronics.

5.3.4 Optical Pushing and Hyperfine State Detection

With this setup, it is possible to drive Raman transitions in cesium, but it is still neces-

sary to have a measurement scheme to detect the internal state populations. Beginning

with cooling in the 3D optical lattice, the atoms were cooled in the F = 3 ground hy-

perfine level. As discussed above, a brief repumping pulse transferred the atoms to the

F = 4 level. At this point we could drive Raman transitions back to the F = 3 level. To

detect the population transferred by the Raman process, we turned on a beam resonant

with the F = 4 −→ F ′ = 5 cycling transition to accelerate the F = 4 atoms to high

velocity, leaving only the F = 3 atoms in the interaction region; these atoms could then

be detected by the usual freezing molasses method or used as a starting point for further

From DBR diode laser

80 MHzAOM
(tunable 60-100 MHz)

to Fabry-Perot cavity

l/4

n - 195 MHz45

n -75/+5 MHz45

for MOT/molasses light

97.5 MHzAOM
(tunable 60-100 MHz)

l/4

n44

for optical pumping
to F = 4, m = 0

n45

for pushing away
F = 4 atoms

56 MHzAOM

Figure 5.8: Optical layout for other beams needed for Raman tagging. The same laser is

used to generate light for the MOT/molasses, the optical pumping into F = 4, mF = 0,
and for pushing F = 4 atoms out of the interaction region after the tagging.
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atomic manipulation and experimentation. This pushing beam was combined with the

phase-modulated Raman beam by a cube beam splitter before the half-wave plate, and

thus was circularly polarized as it propagated along the Raman-beam axis. The beam

also diverged rapidly (it passed through a 25.4 mm focal length lens about 0.5 m away

from the atoms), so that it was large and uniform at the atomic cloud. This light was

derived from the DBR laser beam line by a double-passed, 97.5 MHz fixed-frequency

AOM, as shown in Fig. 5.8. The light was turned on at low level for 800 µs, accelerating

the atoms to over 100 · 2�kL. The circular polarization of this beam had the advantage

that atoms were optically pumped into the F = 4, mF = 4 −→ F ′ = 5, mF = 5 cycling

transition; atoms in this excited state do not decay (by dipole transitions) to the F = 3

ground level, and atoms in F = 4, mF = 4 cannot be pumped off-resonantly to the

F ′ = 4 excited level (by a dipole transition), so this transition is tightly closed. How-

ever, it was still important to use a sufficiently low light level during the first part of the

pushing to avoid off-resonant excitation before the atoms were fully optically pumped.

This procedure removed the F = 4 atoms from the detection region after the drift time

with about 99.9% efficiency, with the remaining atoms forming a broad background in

the momentum distribution measurements.

To detect the number of atoms transferred by the Raman interaction, we used

the usual ballistic-expansion measurement. We ignored the spatial dependence of the

CCD image and simply counted the total fluorescence, which after a background sub-

traction is proportional to the number of atoms in the F = 3 level. A sample measure-

ment of Raman Rabi oscillations on resonance (for one of the Zeeman transitions) is

shown in Fig. 5.9, which exhibits clean oscillations with a certain amount of damping.

For comparison, the Raman Rabi oscillations in the counterpropagating arrangement are

shown in Fig. 5.10. The oscillations in this configuration have lower contrast, as we

expect from the previous theoretical discussion, and show much lower overall popula-

tion transfer due to the velocity selectivity. Some detuning-dependent Raman selection

profiles for the copropagating mode are shown in Fig. 5.11 for several interaction times.
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5.3.5 Hyperfine Magnetic Sublevel Optical Pumping

One difficulty in implementing velocity selection via stimulated Raman transitions in

cesium is due to the highly degenerate level structure. For a generic polarization state

of the Raman fields, there are 15 possible transitions, each with possibly different Zee-

man and Stark shifts, as well as different Rabi frequencies. To make this situation much

cleaner, we implemented optical pumping of the atoms into the F = 4, mF = 0 sublevel

before driving the Raman transition. We effected this optical pumping using another

beam derived from the DBR laser, this time with a 56MHz AOM (as shown in Fig. 5.10)

to shift the beam down in frequency to be on resonance with the F = 4 −→ F ′ = 4

transition. The beam was spatially filtered and introduced via the MOT beam win-

dow on the top of the chamber, so that its linear polarization direction was along the

Raman-beam propagation axis. This light was pulsed on for 50 µs, beginning 66 µs

before the end of the of the ramp-down time of the 3D optical lattice. Because the

F = 4, mF = 0 −→ F ′ = 4, m′F = 0 transition is forbidden in the dipole approxima-
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Figure 5.9: Example of an experimental measurement of excited population oscillations

for a resonant, stimulated Raman transition in copropagating mode. The damping here

is due mostly to spontaneous scattering of the Raman light. The data points here were

not averaged over multiple measurements.
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tion, the atoms accumulated in the F = 4, mF = 0 sublevel after several fluorescence

cycles. Atoms that decayed to the F = 3 ground level were returned to F = 4 by the

usual repumping light, which was turned on at the same time as the optical-pumping

light. The repumping light was left on until the end of the 3D lattice ramp-down time

to ensure that all atoms were in the F = 4 ground level. Two of the Helmholtz coils

were also pulsed on to provide a 1.5 G bias field along the polarization direction of

the pumping light, which swamped other residual magnetic fields and thus prevented

remixing of the magnetic sublevels. The coils were turned on 200 µs before the pump-

ing light to allow transients to decay away. This procedure pumped most (>95%) of

the atoms into the proper magnetic sublevel. Because the Raman beams were circularly

polarized, they drove the atoms from the F = 4, mF = 0 level to the F = 3, mF = 0

level via the F ′ = 3, mF = 1 and F ′ = 4, mF = 1 excited states. The atoms thus all

experienced the same Raman Rabi frequency, and the Raman transition frequency was
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Figure 5.10: Example of an experimental measurement of excited population oscillations

for a resonant, stimulated Raman transition in counterpropagating mode. The scale of

the vertical axis is the same as in Fig. 5.9. The population transfer is much less efficient

due to the velocity selectivity of the counterpropagating configuration. The oscillations

also show an upwards trend due to relaxation of nonresonantly coupled atoms. The data

points here were not averaged over multiple measurements.
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Figure 5.11: Experimental measurement of excited population vs. Raman detuning ∆R

for different interaction (square) pulse lengths. The data are shown as points, and

the solid lines represent the best fit of a model based on direct integration of the

Schrödinger equation for the two-level atom. The asymmetries of the profiles, which

is not predicted by Eq. (5.26), can largely be explained by broadening due to the inten-

sity variation of the Gaussian profile of the Raman beams over the atomic sample, which

is included in the model. The model was fit simultaneously to all the distributions, and

the fitted parameter values are: ΩR = 2π · 2.1 kHz, a coherence damping rate of 21 Hz,
and a Raman beam waist w0 = 2 mm (assuming a Gaussian MOT spatial profile with

width parameter σx = 0.15mm). The data points here were not averaged over multiple
measurements.
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insensitive to magnetic fields to first order (this transition is the cesium clock transition

that currently defines the measurement of time). Because of the Zeeman shift due to

the large bias field, any atoms left in other magnetic sublevels did not participate in the

Raman transition. Unfortunately, these benefits came at the expense of temperature,

which increased to 3 µK (or σp/2�kL = 1.9) after the optical pumping (beginning with

atoms cooled in the 3D optical lattice). One possible improvement would be to imple-

ment sideband cooling into the mF = 0 sublevel [301], but such a scheme requires a

considerable increase in the complexity of the experiment.

5.3.6 Implementation of Stimulated Raman Velocity Selection

The 3D lattice cooling, Raman-field setup, pushing-beam setup, and optical-pumping

procedure were all important for implementing velocity selection by stimulated Raman

transitions. Typically, we selected atoms to be near p = 0 as a starting point for further

quantum state preparation techniques. The procedure for Raman velocity selection (or

“Raman tagging”) atoms near p = 0 was as follows:

1. Trap and cool atoms in theMOT, and then further cool the atoms in the 3D lattice.

2. Turn on the magnetic bias field along the direction of the Raman beams to define

the quantization axis.

3. Use the optical pumping light (during the ramping down of the 3D lattice) to

prepare atoms in F = 4, mF = 0 sublevel.

4. Use the Raman beams (both with σ+ polarization) in counterpropagating mode to

tag atoms with p = 2�kL in the F = 4, mF = 0 state to the F = 3, mF = 0 state

with p = 0. The Raman pulse has appropriate intensity and duration to drive a

π-pulse with the desired momentum width.

5. Use the resonant pushing light to remove atoms in F = 4.
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The atoms were then further manipulated as desired, as described below, and then

subjected to the 1D, time-dependent standing-wave interaction as described in the fol-

lowing chapter. In the typical experiment in Chapter 6, the Raman beams drove an

800 µs, square π-pulse. This pulse should result in a selected profile as in Eq. (5.26),

with a half width at half maximum (HWHM) of 0.03 · 2�kL. Because of the resolution

limit set by the initial size of the MOT cloud, we could not directly verify this profile

with our ballistic-expansion measurement, but the expansion rates and the scaling of

the fluorescence of the selected atoms with the pulse duration were consistent with the

theoretical expectation. This extreme velocity selection was crucial to the success of

the experiments in Chapter 6, but had the unfortunate side effect that about 99.5% of

the atoms (after 3D lattice cooling) were discarded, causing relatively weak signals in

the measurements.

5.3.7 Raman Cooling

With the setup described above, it should in principle be possible to implement Raman

cooling, where a large fraction of the atoms could be cooled into a narrow velocity slice as

narrow as (or perhaps narrower than) the Raman-tagged slice. Raman cooling works in a

repetitive cycle, where atoms at all velocities, except for those in a “target” region near

zero momentum, are transferred from the F = 4 level to the F = 3 level by velocity-

selective, stimulated Raman transitions. Then the repumping light is pulsed on to re-

turn the atoms to F = 4, but with slightly different momentum due to the fluorescence

cycle. We implemented the dual-AOM scheme described above so that the direction of

the momentum transfer due to the Raman transition could be reversed, and thus during

the Raman tagging cycle the atoms on either side of the target region could be moved

towards it. However, there are several technical challenges involved in implementing

Raman cooling, the most severe of which is the presence of residual magnetic fields. For

efficient cooling, the fields must be nulled to 1 mG or better [302], necessitating the

use of a glass chamber (with no ferromagnetic materials) and µ-metal shielding, because
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the atoms are distributed among the magnetic sublevels. Furthermore, Raman cooling

leaves a broad background in the momentum distribution [296, 302], which must be

removed by a final tagging sequence as described above; however, we have noted that

transitions associated with different sublevels proceed at different rates, making a clean

π-pulse difficult. An optical pumping cycle after cooling would ruin the very cold tem-

peratures, but selecting only atoms in a given sublevel would result in another large hit

in atom number.

To circumvent these technical problems, we attempted a modified Raman-cool-

ing procedure, which was performed in the presence of a bias field as above. In addition

to the repumping, we also applied the optical pumping light during the recycling stage

of each iteration. The target state in this case is the F = 4, mF = 0 state simultaneously

with p = 0, which is a much more stringent requirement. After a brief attempt, we were

not able to cool using this technique, and we instead elected to use averaging as a more

straightforward way to address the difficulty of small signals.

5.4 Interaction-Potential Phase Control

An important part of the state-preparation procedure for the experiments in Chapter 6

was the ability to change the phase of the one-dimensional optical lattice. One method

for changing the phase is suggested by the analysis in Section 2.6, where we concluded

that a frequency difference between the two traveling-wave components results in a

moving standing wave. A phase shift can thus be obtained by introducing a pulsed

frequency difference. From an experimental point of view, this method is not optimal

because it requires splitting the beam, reducing the available intensity (relative to a

retroreflecting setup), and it requires careful modematching of the two traveling waves.

Because the optical lattice was formed by retroreflecting a laser beam in the

setup here, the phase of the standing wave was set by the position of the retroreflec-

tor. Thus we could move the standing wave simply by moving the retroreflector. We

could effectively move the retroreflector by inserting an electro-optic phase modulator
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(EOM) in the beam path just before the retroreflector. Doing so gave direct electronic

control of the optical path length between the atoms and the retroreflector. We used a

Conoptics, Inc. model 360-40 EOM, which used a 40 mm long lithium tantalate (LTA)

crystal, with a model 302 driver. The EOM had a 2.7 mm clear aperture, and we fo-

cused the optical lattice beam onto the retroreflector using a 300 mm focal length lens

to ensure that the EOM did not clip the beam. The EOM was also aligned so that

the beam propagated slightly off the EOM axis to avoid interference fringes (the reflec-

tions of the EOM were also minimized by antireflection coatings on the windows and

index-matching fluid inside the housing). To avoid polarization-modulation effects, it

was important to carefully set the EOM angle relative to the lattice-beam polarization.

The lattice-beam polarization was set to be horizontal by a cube polarizer mounted just

before the entry of the lattice into the chamber. On the other (retroreflecting) side

of the chamber, we inserted another cube polarizer before the EOM and adjusted the

EOM angle to minimize the signal rejected from the polarizer as the EOM phase was

scanned.

In the previous setup of Chapter 3, the stability of the retroreflector was en-

sured by rigidly mounting it to the vacuum chamber. This new setup was too large to

be mounted directly on the chamber, so we constructed a platform to mount the op-

tics, as shown in Fig. 5.12. This platform consisted of a 1/2” thick aluminum plate (jig

plate), which rested on a similar piece of 1/2” thick aluminum. A layer of 1/2” thick

Sorbothane damping rubber was sandwiched between the two aluminum plates. The

lower plate was mounted rigidly to the table by six stainless steel posts (1.25” diameter)

in an irregular pattern. The optical-lattice beam propagated only 2” above the platform

surface to minimize vibrations of the optical mounts. An interferometer constructed

on the platform itself measured negligible vibrations, but was incapable of detecting

center-of-mass vibrations of the platform, which also contributed to phase jitter of the

optical lattice.

This setup provided good phase control over a large range in phase (the EOM
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controller had an 800 V range, where 250 V corresponds to a 2π phase shift of the lattice

phase) on a fast (∼ 1 µs) time scale. One caveat, however, is that fast changes in the

phase could excite piezoelectric resonances of the EOM, where the crystal itself begins

mechanically ringing as a result of the sudden excitation. This effect is illustrated in

Fig. 5.13, where the EOM phase, as measured by a Michelson interferometer, shows

ringing in response to a sudden step in the control voltage. The resonance occurred at

150 kHz, with a quality factor Q of about 12. Of the available options from Conoptics,

this LTAmodulator was the most suitable; the KD*Pmodulators have a smaller available

phase range while exhibiting substantially worse ringing than the LTA modulator, even

when the crystal is mechanically clamped, and the ADP modulators, which have no

piezoelectric resonances, have poor transmission at 852 nm.

Retroreflector

EOM
Damping Material

Lens

Figure 5.12: Photograph of the phase-control setup for the one-dimensional optical lat-

tice. The components in this setup are shown mounted on the damped, raised, mount-

ing table, and several components for the stimulated Raman optical setup are also visible

both on the main and raised tables.
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5.5 State-Preparation Sequence

Now we will discuss how the various tools presented in this chapter were used to pre-

pare localized initial states in phase space. An overall schematic view of the procedure is

illustrated in Fig. 5.14, which shows the condition of the state in phase space at various

points in the process. This state-preparation procedure began with the Raman velocity

selection process as in Section 5.3.6, which prepared a quantum state that was subre-

coil in momentum but delocalized in space. The 1D optical lattice was then turned

on adiabatically, with the same temporal profile and time constant (30 µs) as the 3D

lattice, although here the leading edge of the profile was clipped 300 µs before the max-

imum intensity was reached. The lattice caused the atoms to become localized at the

potential minima, at the expense of some heating in momentum. Because the initial

momentum distribution was narrow compared to the photon recoil momentum �kL, the

resulting phase-space distribution had the discrete structure shown in Fig. 5.14. This
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Figure 5.13: Response of the electro-optic modulator to a sudden phase step, as mea-

sured interferometrically. The fitted model (dashed line) is a sum of two pure exponen-

tials of different time constants and a damped cosine: f(t) = 0.87 · exp (−t/0.37 µs) +
0.11·exp (−t/7.5 µs)+0.011·cos (2πt/6.8 µs − 0.79) exp (−t/25 µs)+0.004 (for t > 0).
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2. Turn on 1D standing wave
adiabatically

p

p

x

p

x

1. Begin with Raman-prepared
(subrecoil) atoms

x

p

x

3. Sudden shift of standing-
wave phase

4. Free evolution of atoms in
optical lattice

Figure 5.14: Schematic picture of the state-preparation sequence, beginning with the

atoms prepared by subrecoil Raman velocity selection. The influence on the atoms in

phase space is illustrated. The “striped” character of the distributions is a result of the

discrete nature of the momentum transfer to the atoms.
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structure can be understood intuitively in the discrete momentum transfer (in steps of

2�kL) from the lattice as it is turned on, and also indicates coherence of the wave packet

over multiple potential wells. Recalling from Chapter 2 that for adiabatic processes the

band index and quasimomentum are preserved, the atoms were loaded completely into

the lowest energy band of the optical lattice. For deep wells (as used in the experi-

ment), the lowest band is approximately the harmonic oscillator ground state (repeated

in each well), and thus the overall distribution envelope was approximately a minimum-

uncertainty Gaussian wave packet, modulo the standing-wave period. The structure of

subrecoil “slices” in the distribution out of an overall Gaussian profile was important in

the experiments in Chapter 6, and we will return to this issue in the discussion there.

After the atoms became localized in the lattice potential wells, the phase of the

standing wave was shifted by around 1/4 of the lattice period, which had the effect

of displacing the atoms onto the gradients of the potential. They were then allowed

to evolve in the stationary optical lattice, where they returned to the potential minima,

acquiring momentum in the meantime. In a harmonic potential, this procedure amounts

to a boost of the wave packet in momentum, where the distance in momentum is set by

the amount of displacement. The anharmonicities in the optical lattice led to a slight

distortion of the wave packet, although it was still mostly Gaussian. More importantly,

the subrecoil structure of the wave packet was preserved because all of this motional

control was induced by the lattice. We refer to this state preparation procedure by the

acronym “SPASM,” for “State Preparation through Atomic Sliding Motion.”

To make this procedure more concrete, the experimental parameters for the first

group of data in Chapter 6 (i.e., for α = 10.5, k̄ = 2.08) were as follows: the Raman

π-pulse selection time was 800 µs, giving a velocity slice with a HWHM of 0.03 · 2�kL;

the lattice was turned on to a depth of αp = 11.8 (in the units of Section 2.7); the

lattice phase was shifted by 0.25 of the lattice period, and the atoms evolved in the

lattice for 6 µs, which was the time after which the atomic momentum was maximized;

and the resulting distribution (in momentum) was peaked at 4.1 · 2�kL, with a width
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σp = 1.1 · 2�kL. For the second group of data (k̄ = 2.08, for various other values of α),

the same Raman velocity selection parameters were used; the optical lattice was turned

on to a maximum depth of αp = 16.4; the lattice phase was shifted by 0.21 of the lattice

period, and the atoms evolved for 4.5 µs in the lattice; and the prepared distribution was

peaked at 4.2 · 2�kL, with a width σp = 1.7 · 2�kL. For the third data group (k̄ = 1.04),

the same Raman velocity selection was again used; the optical lattice was turned on to

a maximum depth of αp = 30.9; the lattice phase shift was 0.30 of the standing-wave

period, after which the atoms evolved for 3.5 µs; and the momentum distribution was

peaked at 8.2 · 2�kL, with a width σp = 2.1 · 2�kL.

The procedure for carrying out the experiments in the following chapter is then

very similar to the procedure in Chapter 3, albeit with a much more complicated state-

preparation sequence inserted after the initial cooling and trapping of the cesium atoms.

After the state-preparation sequence, the atoms were exposed to the temporally mod-

ulated optical lattice, where the dynamics of interest occurred. The atoms were then

allowed to drift freely in the dark for 20ms, and the freezing molasses and CCD camera

enabled a measurement of the atomic momentum distribution by imaging the atomic

fluorescence for 20 ms.

5.6 Calibration of the Optical Potential

After the introduction of a lens and EOM in the beam path of the 1D optical lattice, we

found that the calibration method of Section 3.4.3 no longer produced reliable values for

the optical potential depth. This was most likely due to the breakdown of the assump-

tion that the beam waists measured at the knife edge and CCD camera were the same

as the waist at the MOT. Thus, the CCD camera was only used to collimate the beam

as much as possible: first, the beam was retroreflected with a temporary mirror before

the (EOM) lens, and the beam was adjusted so that two beam spots on the CCD (going

to and from the vacuum chamber) were approximately the same; then, the temporary

mirror was removed, and the longitudinal position of the lens was adjusted to make the
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spots again equal, thus ensuring that the lens focused the beam onto the retroreflecting

mirror.

The state-preparation method outlined above suggests another, in situ method

to calibrate the potential amplitude. If the Raman velocity selection procedure is used

to select a subrecoil momentum sample of the atoms, and the 1D lattice is adiabati-

cally turned on to a large potential depth, an approximately minimum-uncertainty wave

packet (modulo the period of the lattice) results, as mentioned above. If the EOM then

provides a sudden but small phase shift, the atoms begin to oscillate in the lattice. The

oscillation frequency serves as a direct measurement of the potential depth. In the sim-

plest approximation, valid for large potential depths, the oscillations can be regarded

as harmonic oscillations near the parabolic potential minima. Recalling from Chapter 2

that the unscaled Hamiltonian for atomic motion in the optical lattice has the form

H =
p2

2m
− V0 cos(2kLx) , (5.30)

we can expand the potential to O(x2) about x = 0 to obtain the equivalent harmonic

oscillator, which has a period

THO =
π

kL

√
m

V0
. (5.31)

However, for a given potential depth V0, we would actually underestimate the true os-

cillation period as a result of two effects, anharmonic frequency shifts and quantum

effective potential frequency shifts, which we now discuss.

5.6.1 Anharmonicity

Using the same unit scaling as in Chapter 2 (i.e., units where � = 1), the pendulum

Hamiltonian is

H =
p2

2
− αp cos x . (5.32)

For a particular value E of the Hamiltonian, we can write the pendulum period as [5]

T (k) =
4√
αp
F
(π
2
, k
)
, (5.33)
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where F (θ, k) is the elliptic integral of the first kind, and

k =

√
1
2
(1 + E/αp) . (5.34)

Since F (π/2, 0) = π/2, the small-displacement (harmonic) frequency for this equation

is

THO = T (0) =
2π√
αp

, (5.35)

so that the fractional period shift due to the lattice anharmonicity is

T (k)
THO

=
2
π
F
(π
2
, k
)

= 1 +
k2

4
+ O(k4) .

(5.36)

Thus, larger amplitudes of oscillation result in longer oscillation periods, which we ex-

pect from the fact that the lattice potential drops below the parabolic approximation

away from the potential minima.

5.6.2 Quantum Effective Potentials

In addition to the classical anharmonic effects, the oscillation period in the lattice is also

increased by the fact that we are considering a quantumwave packet. This effect is illus-

trated by the numerical simulations in Fig. 5.15. Because of the adiabatic loading of the

atoms into the ground state of the lattice, we can invoke the harmonic approximation to

argue that the state within a single well is approximately minimum-uncertainty Gaussian

with momentum uncertainty σp = (αp/4)1/4 and spatial uncertainty σx = (4αp)−1/4.

From the Ehrenfest equations of motion for the mean values of x and p [303],

∂t〈x〉 =
〈p〉
m

∂t〈p〉 = −〈∂xV (x)〉 ,
(5.37)

we might expect that the quantum mean values oscillate as in the classical case, but

where the potential is “smeared” out by the spatial extent of the wave packet. Perform-

ing a convolution of the pendulum potential with the spatial distribution of the Gaussian
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wave packet, we find that this effective potential is still sinusoidal, but with a reduced

amplitude:

αeff = αp exp
(
− 1
4
√
αp

)
. (5.38)

Because we have scaled the units so that � = 1, the scaled well depth αp represents

the “degree of quantumness” of the pendulum, with larger values representing more

classical behavior (and thus a smaller wave-packet area in phase space), as reflected in

this quantum scaling factor. Hence, we should expect that the quantum wave packet

moves with a longer period due to the reduced effective potential amplitude, and also

that the wave packet motion will be further retarded by “classical” anharmonic effects

in the effective potential.
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Figure 5.15: Comparison of simulated pendulum oscillations of the classical case in the

harmonic approximation (dashed line) to the anharmonic classical pendulum oscillations

(dotted line) and the oscillations of an initially minimum-uncertainty quantum wave

packet (solid line). The slowing effects of the anharmonicity and quantum wave packet

extent are evident here. The system parameters are αp = 10 (and � = 1), with the
wave packet and trajectories initially centered at (x, p) = (0, 1.5).
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5.6.2.1 Wigner-Function Derivation

Hug and Milburn [304] have recently produced a more formal derivation of a quantum

scaling factor based on the Wigner-function dynamics, in the context of the amplitude-

modulated pendulum. Here we adapt this calculation to the ordinary pendulum, since

the derivation does not depend on the temporal modulation of the potential.

We begin with the general equation of motion for the Wigner function (which

we introduced in Chapter 1 as the Moyal bracket),

∂tW (x, p) = −p∂xW (x, p) +
i

k̄

[ ∞∑
s=0

1
s!

(
k̄

2i

)s
∂sxV (x, t)∂

s
pW (x, p)

−
∞∑
s=0

1
s!

(
− k̄
2i

)s
∂sxV (x, t)∂

s
pW (x, p)

]
,

(5.39)

where we will keep the scaled Planck constant k̄ explicit for the time being. We can

then insert the pendulum potential,

V (x) = −αp cos(x) , (5.40)

with the result

∂tW = −p∂xW +
αp
k̄
sin(x)

∞∑
s=0

1
s!

(
k̄

2

)s
[1− (−1)s]∂spW . (5.41)

If make use of the Taylor expansion

W (x, p+ k̄/2) =
∞∑
s=0

1
s!
[∂spW (x, p)]

(
k̄

2

)s
, (5.42)

then Eq. (5.41) becomes

∂tW (x, p) = −p∂xW (x, p) +
αp
k̄
sin(x) [W (x, p+ k̄/2)−W (x, p− k̄/2)] . (5.43)

The goal here to put this equation of motion into “classical form” (of a Liouville equation

for a classical phase-space distribution) with an effective potential Veff :

∂tW = −p∂xW + ∂xVeff∂pW . (5.44)
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Hence, we can make the identification

∂xVeff =
αp
k̄
sin(x)

W (x, p+ k̄/2)−W (x, p− k̄/2)
∂pW (q, p)

. (5.45)

We now take the Wigner function to be Gaussian,

W (x, p, t) =
1
πk̄
exp

[
− ξ
k̄
(x− 〈x〉)2 − 1

k̄ξ
(p− 〈p〉)2

]
, (5.46)

where ξ(t) is a time-dependent squeezing parameter. So, we can evaluate the terms in

the effective potential,

∂pW (x, p) = −2(p− 〈p〉)
k̄ξ

W (x, p) , (5.47)

and

W (x, p± k̄/2) = exp
(
− k̄
4ξ

)
exp

[
∓1
ξ
(p− 〈p〉)

]
W (x, p) , (5.48)

and thus the effective potential becomes

Veff = −αp cos(x) exp
(
− k̄
4ξ

) sinh [1
ξ
(p− 〈p〉)

]
1
ξ
(p− 〈p〉)

. (5.49)

If we assume that the wave packet remains localized (which is implicit in assuming the

Gaussian form), then the sinh ratio is approximately unity. Thus, the effective potential

is the original potential compressed by a factor of exp[−k̄/(4ξ)].

Turning to the quantum pendulum, we can select a preferred value of ξ based

on the adiabatic loading into the lattice. Rewriting the Wigner function in terms of σx

and σp and using σxσp = k̄/2,

W (x, p) =
1√
2πσx

exp
[
−(x− 〈x〉)2

2σ2x

]
1√
2πσp

exp
[
−(p− 〈p〉)2

2σ2p

]

=
1
πk̄
exp

[
−
−2σ2p
k̄2

(x− 〈x〉)2 − 1
2σ2p

(p− 〈p〉)2
]
,

(5.50)
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we find that ξ = 2σ2p/k̄ = k̄/(2σ2x). Then, for the quantum pendulum in the harmonic

oscillator approximation, we have k̄ = 1 and σ2p =
√
αp/2, so ξ =

√
αp. Thus, the

effective potential in this case is given by

Veff(x) = −αp cos(x) exp
(
− 1
4
√
αp

)
, (5.51)

which is the same result that we found in the simple Ehrenfest (Gaussian convolution)

model.
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Figure 5.16: Experimentally measured oscillation periods in the optical lattice, normal-

ized to the classical period in the harmonic-oscillator approximation, shown as a dashed

line. For comparison the harmonic period in the quantum effective potential is also

shown (solid), which agrees reasonably well with the data. Also shown is the splitting

of the two lowest eigenstates (with zero quasimomentum) calculated for the sinusoidal

potential (dot-dashed line). These latter two curves diverge for small αp, where the
Gaussian approximation for the ground state of the lattice breaks down. The experi-

mental data points are averages over three measurements, and the error bars represent

statistical variations among the repeated measurements. The αp scale was calibrated by

comparing the periods in the right half of the plot directly to quantum simulations, as

described in the text.
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5.6.3 Calibration by Simulation

From the above analysis, we can see that the situation is not entirely simple when de-

ciding what oscillation frequency to expect, given a particular potential depth. To di-

rectly account for these effects, we compared the measured wave-packet oscillations

to quantum-pendulum simulations. We first extracted the oscillation period of the ex-

perimental data, along with the maximum average momentum achieved by the atomic

distribution, by fitting an exponentially damped cosine function to the measured 〈p〉

evolution data. Then a quantum simulation was set up for a minimum-uncertainty wave

packet with the same maximum average momentum, and the αp parameter in the sim-

ulation was adjusted until the simulated period matched the experimental period. The

simulation was facilitated by the fact that the experiment used narrow Raman velocity

selection, so that it was a good approximation to use only the discrete plane-wave basis

p = n2�kL (for integer n). Although anharmonic effects were taken into account by

using the same maximum momentum in the simulations, these calibrations were typ-

ically done with small EOM phase displacements (about 0.05 of the lattice period) to

minimize these effects and maintain the Gaussian character of the wave packet as long

as possible. When performed with several different lattice intensities, the resulting cal-

ibrated values of αp typically agreed at the 3% level or better, although we quote a 5%

uncertainty for all the well-depth values in Chapter 6 to account for other systematic ef-

fects (such as piezoelectric ringing of the EOM) in the calibration procedure. Fig. 5.16

shows a series of experimentally measured oscillation periods as a function of αp, cali-

brated as described here.



Chapter 6

Chaos-Assisted Tunneling

6.1 Overview

We will now discuss experimental results on quantum dynamics in the case where the

corresponding classical description is characterized by a mixed phase space, in which

chaotic and stable regions coexist. This regime is distinctly different from the strongly

chaotic regime of Chapter 4, and the study of this new regime is enabled by the state-

preparation methods outlined in the previous chapter. The experiments study the

atomic motion in a standing wave of light that is modulated sinusoidally in time. In

particular, we will focus on tunneling between two islands of stability in the classical

phase space of this system. Because the classical transport between the islands is for-

bidden by the system dynamics and not by a potential barrier, this tunneling is known

as dynamical tunneling. We will investigate the salient details of the tunneling, includ-

ing how the tunneling depends on the phase-space location of the initial condition and

the role of symmetry in supporting the tunneling. More significantly, though, we will

discuss how the presence of chaos in phase space can enhance the tunneling rate, and

we will examine evidence for such chaos-assisted tunneling in the experimental results.

This evidence includes a comparison to a dynamical tunneling process (Bragg scatter-

ing) that occurs in the integrable counterpart to the modulated system; a fast, secondary

oscillation in the tunneling dynamics; and the dependence of the tunneling rate on the

lattice intensity. Finally, we will see how noise destroys the quantum tunneling effect

and restores classical-like behavior, and how the system is more sensitive to noise as the

parameters move the dynamics closer to the classical limit.

204



205

A subset of the data presented here, including the observation of tunneling os-

cillations, the effects of location in phase-space and broken symmetry, a comparison to

Bragg scattering, and the influence of a third (chaotic) state has been previously pub-

lished in [215].

6.2 Barrier Tunneling

Before tackling the issue of tunneling in phase space, we will begin with the familiar

problem of tunneling in a symmetric double-well potential, of which one example is

shown in Fig. 6.1. In the limit where the barrier separating the wells is arbitrarily high,

the system can be regarded as two isolated, identical potential wells, and thus the level

structure of the combined system is a set of degenerate doublets. For a potential barrier

of finite height, the doublet states are coupled because a state localized in one well

“leaks” through the barrier and into the other well. In the weak-coupling regime, we can
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Figure 6.1: The ground-state tunneling doublet of the quartic double well potential,

H = p2/2 + x4 − 4x2 (with � = 1). The symmetric-state energy is −2.20, and the
antisymmetric-state energy is −2.10.
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neglect the coupling of a particular doublet to other doublets, and thus the Hamiltonian

for a doublet can be written as

H =
(

E0 −℘/2
−℘/2 E0

)
(6.1)

in the uncoupled basis {|L〉, |R〉} (localized in the left and right well, respectively),

where ℘/2 represents the coupling energy between the two states. The coupling matrix

elements in this case are negative because the perturbation is a reduction of the poten-

tial from an arbitrarily large height. The eigenvalues of this Hamiltonian are E0 ± ℘/2,

and the eigenvectors are the symmetric and antisymmetric combinations (|L〉±|R〉)/
√
2

of the uncoupled states. The antisymmetric state has the larger energy for positive ℘,

which is consistent with the small-barrier limit of a single well. The lowest energy dou-

blet for the quartic double well is shown in Fig. 6.1.

The doublet of a symmetric and an antisymmetric state can then fully describe

the tunneling behavior. If we begin the evolution with a state localized in the left-hand

well, it can be written approximately as the superposition (|+〉 + |−〉)/
√
2, where |+〉

and |−〉 are the symmetric and antisymmetric doublet states, respectively. The time-

dependent solution is

|ψ(t)〉 = 1√
2

(
|+〉ei℘t/2~ + |−〉e−i℘t/2~

)
= cos

(
℘t

2�

)
|L〉+ i sin

(
℘t

2�

)
|R〉 ,

(6.2)

up to an overall phase. Thus, as the two states dephase, the wave packet oscillates

between the two wells with an angular frequency of ℘/�. In the WKB (semiclassical)

approximation, the tunnel splitting ℘ can be written [31, 305, 306]

℘ =
�ω0
π
exp

(
−1

�

∫ x2

x1

√
2m(V (x)−E0) dx

)
, (6.3)

where x1 and x2 are the two inner classical turning points at energy E0, and ω0 is the

classical angular oscillation frequency in one of the uncoupled wells. This A exp(−S/�)
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scaling of the tunneling rate with �, where A is a smooth function of � and S is the imag-

inary part of the classical action along a (complex) path connecting the two tunneling

regions, is characteristic of tunneling where only two states are involved [306, 307].

It is important to note that the tunneling here is facilitated by the reflection

symmetry of the system. In a double well with small asymmetry (i.e., the energy differ-

ence between the wells is small compared to the uncoupled energy splittings), we can

simply change the model Hamiltonian (6.1) to reflect an energy displacement of one

well:

H =
(
E0 +∆ −℘/2
−℘/2 E0

)
. (6.4)

In this model, ∆ controls the asymmetry of the system. Comparing this Hamiltonian to

the Hamiltonian (2.25) for a driven two-level atom in the rotating-wave approximation,

we see that these two systems are formally equivalent. Thus the eigenvalues are

E± = E0 +
1
2

(
∆∓

√
∆2 + ℘2

)
, (6.5)
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Figure 6.2: Illustration of an avoided crossing of a tunneling doublet as a function of the

asymmetry parameter ∆, as described by Eq. 6.5. The dashed lines show the energies

in the absence of any coupling.
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and the corresponding eigenvectors are

|+〉 = sin θ|L〉 + cos θ|R〉
|−〉 = cos θ|L〉 − sin θ|R〉 , (6.6)

where

sin θ =

√√√√1
2

(
1− ∆√

∆2 + ℘2

)

cos θ =

√√√√1
2

(
1 +

∆√
∆2 + ℘2

)
,

(6.7)

or more compactly,

tan(2θ) = − ℘
∆

(
0 ≤ θ < π

2

)
. (6.8)

As in the two-level atom, the |+〉 and |−〉 states are the “dressed” states of the sys-

tem, and the tunneling oscillations can be regarded as Rabi oscillations between the

two wells. The asymmetry in the double well then corresponds to driving a two-level

atom off resonance, and the coupling induces an avoided crossing of the two levels as

a function of ∆, as illustrated in Fig. 6.2. In the asymmetric case, the eigenstates lose

their symmetric and antisymmetric characters, reducing to the uncoupled states in the

limit of large ∆. The tunneling proceeds at the generalized Rabi frequency
√
℘2 +∆2,

which is faster than in the symmetric case, but the tunneling is suppressed in the sense

that only a fraction ℘2/(℘2 + ∆2) of the population in the initial well participates in

the coherent tunneling oscillation. Hence, the symmetry is an important ingredient for

producing the tunneling. For larger asymmetries, a state in one well may couple to a

different state in the other well, causing this picture to break down; such “accidental”

degeneracies can also lead to tunneling, even in the absence of symmetry.

6.3 Dynamical Tunneling

In the case of the double-well potential, the potential barrier is an obvious impediment

to the classical transport between the two wells. However, it is useful to regard the clas-
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sical transport more abstractly, from the point of view of the phase space of the double

well, as shown in Fig. 6.3. Here the two wells are represented by regions surrounding

stable (elliptic) fixed points. Classical trajectories within a single well are confined to

nearly elliptical trajectories surrounding only one of the fixed points, while trajectories

with enough energy to cross the potential barrier are represented by larger contours that

surround both of the elliptic points. We can thus view these invariant surfaces along

which the trajectories lie (which correspond to KAM surfaces in near-integrable sys-

tems) as barriers for the classical transport, because classical trajectories cannot cross

these surfaces. This is true in a trivial sense for the double well, because all trajectories

are confined to their corresponding surfaces. However, these invariant surfaces retain

their role as barriers for classical transport in all systems with two degrees of freedom

(or, equivalently, periodically driven systems with one degree of freedom), even when

the system is not integrable. Trajectories can wander freely throughout chaotic regions,

but invariant surfaces (including KAM surfaces, which survive in the presence of weak,

nonintegrable perturbations) divide the phase space and cannot be crossed by any trajec-

tory, as a consequence of the continuity and the deterministic character of the equations

Figure 6.3: Phase space for the quartic double-well potential in Fig. 6.1. The barrier

tunneling can be regarded as tunneling between classical invariant tori associated with

the two wells. Classical transport between the wells is forbidden because the classical

trajectories are confined along these invariant surfaces.
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of motion. This is not true in systems with N > 2 degrees of freedom, because the N -

dimensional invariant surfaces no longer partition the (2N − 1)-dimensional surfaces of

constant energy (thus allowing for Arnol’d diffusion [3]). For the systems that we will

consider here, though, we can regard these invariant surfaces as being the fundamental

barriers in phase space to classical transport.

Invariant surfaces are common in nearly integrable systems, and a potential bar-

rier is not necessary for their existence. Davis and Heller first pointed out that dynamical

tunneling could occur between two separated, symmetry-related stable regions in phase

space, where the classical transport is forbidden by the dynamics and not by a poten-

tial barrier [308]. They considered tunneling between two types of oscillatory motion,

which corresponds to tunneling between two islands of stability in phase space, in a two-

dimensional, nonlinear potential with a reflection symmetry. Tunneling can also occur

between other types of stable regions in phase space, such as bands of KAM surfaces in

the phase space of the annular billiard [309].

In fact, the two essential ingredients for tunneling are the existence of a discrete

symmetry and the separation of the (quasi)energy eigenstates in phase space [310].

The second ingredient is obviously fulfilled in the barrier-tunneling problem, because

the low-energy states in the two wells are localized in their respective wells. In dynam-

ical tunneling between two islands of stability, states are also localized in the islands,

which support states similar to harmonic-oscillator states [311] (as one might expect

from EBK quantization). As we have seen before, though, localization is natural in quan-

tum nonlinear systems even with widespread chaos. Thus, there is also the possibility

of “retunneling” [312] between quantum localized states in the Sinai billiard. Here, the

transport is forbidden by quantum localization (but not classically), but oscillatory trans-

port occurs anyway across this quantum “barrier.” A similar tunneling effect can occur

between symmetry-related, exponentially localized states in the kicked rotor [313].

Previous work in the area of dynamical tunneling has been restricted to spec-

troscopic observation of tunneling doublets. It has been pointed out [314, 315] that
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the experimental fluorescence-excitation spectrum of the benzophenone molecule in

[316] shows doublet features that correspond to dynamical tunneling. In this molecule,

there are two symmetry-related benzene rings, each of which can undergo twisting mo-

tions. The tunneling is between the two “local modes,” where one ring twists while

the other is at rest; the spectral doublets then correspond to the symmetric and anti-

symmetric combinations of the local modes. There is also experimental evidence for

dynamical tunneling in wave analogies to quantum mechanics. The tunneling doublets

have also been directly observed in the resonance spectroscopy of a microwave-cavity

realization of the annular billiard [88]. Furthermore, the Shnirelman peak [310] in the

level spacing distribution is a similar signature of dynamical tunneling, and has recently

been observed in an acoustical resonator [93] and a microwave-cavity experiment [317].

Finally, there is an experimental effort, complementary to the one described here, to

study dynamical tunneling of a Bose-Einstein condensate in an amplitude-modulated

standing wave of light [216]. This experiment, while being similar in some respects

to the experiments described below, considers tunneling between a different pair of

resonances (second-order resonances [318]) than we consider later in this chapter.

6.3.1 Tunneling in Atom Optics

The basic experimental system that we used to study tunneling is very similar to that

used in the kicked-rotor experiments in Chapter 4 (save for the substantially more com-

plicated quantum-state preparation), the primary difference being the temporal depen-

dence of the potential. To produce a more manageable, mixed classical phase space, the

amplitude modulation of the potential was relatively smooth:

H =
p2

2m
− 2V0 cos2

(
πt

T

)
cos(2kLx) . (6.9)

The quantities here are as they were defined in Chapter 4. This Hamiltonian is again

that of the pendulum, but with a sinusoidal variation of the potential amplitude in time

from zero to 2V0 with period T . We can make a transformation into scaled units that is
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similar to the transformation used for the kicked rotor, since this system is effectively a

kicked rotor with long, sinusoidal pulses:

x′ = 2kLx
p′/k̄ = p/2�kL
t′ = t/T
H ′ = (k̄T/�)H
α := (k̄T/�)V0
k̄ := 8ωrT .

(6.10)

Here, we have chosen the time scaling so that the scaled period of the modulation is

unity, α is the scaled amplitude of the potential (related to the amplitude in pendulum

units by α = k̄2αp), and k̄ is again the effective Planck constant in the scaled units.

The Hamiltonian in scaled units, after dropping the primes, is

H =
p2

2
− 2α cos2(πt) cos(x) , (6.11)

with the Schrödinger equation given by Hψ = ik̄∂tψ.

In the spirit of the analysis of Section 4.4.4, we can rewrite the potential as

V (x, t) = −α cos(x)− α
2
cos(x+ 2πt)− α

2
cos(x− 2πt) . (6.12)

In this form, the potential appears as the sum of three pendulum-like terms with time-

independent amplitude. Thus the modulated potential can be regarded as a combina-

tion of three pendulum potentials; two of these potentials are moving with momentum

±2π, and the third is stationary. When this system is sampled at integer times, these

three terms produce primary resonances in phase space centered at (x, p) = (0,±2π)

and (0, 0). This structure is evident in the phase spaces in Appendix C, especially for

small α. For larger α, the resonances interact, producing a phase-space structure of

bands of chaos surrounding the three main islands of stability. The tunneling that we

consider here is between the two outer islands of stability, which are related to each

other by reflection symmetry through the origin (x, p) = (0, 0). In configuration space,

the tunneling occurs between a state of coherent motion in only one direction to a state

of the oppositely directed motion. These two states each correspond to being tightly
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bound to one of the two moving components of the lattice. The center island does not

directly participate in the tunneling.

To observe tunneling in the experiment, we used the state-preparation proce-

dure described in Chapter 5. This procedure produced an initial state centered on

one of the outer resonances with narrow slices taken out of the overall Gaussian pro-

file (because of the narrow Raman velocity selection). A schematic representation of

the initial condition for k̄ = 2.08 (corresponding to a 20 µs modulation period) and

an 800 µs Raman-pulse duration is shown in Fig. 6.4 with the classical phase space for

the experimental value of α = 10.5. In this strongly driven regime, the center island

has mostly dissolved into the chaotic sea, making this a clean regime for studying tun-

neling between the remaining two islands. The two islands are located 8 · 2�kL apart

in momentum. The measured evolution of the momentum distribution in this case is

plotted in Fig. 6.5, where the distribution was sampled every 2 modulation periods out

to 80 periods. Four of these distributions are also shown in more detail in Fig. 6.6. Four

coherent oscillations of the atoms between the islands are apparent before the trans-

port is damped out. During the first oscillation, nearly half of the atoms appear in the

secondary (tunneled) peak.

At this point, a few words are in order concerning the initial condition plotted

in Fig. 6.4. The ellipses shown are the 50% contours of the atomic distribution in phase

space. This depiction represents a classical distribution with the same x and p marginal

distributions as the Wigner function for the initial state, but is not itself the correct

Wigner function. The proper Wigner function for this state is more complicated, and

can be constructed from the plotted distribution as follows. Whereas the distribution

shown has momentum slices spaced by k̄, the Wigner function has additional (positive)

slices within the Gaussian profile between these slices, so that the spacing is k̄/2. This

combined structure is then repeated a distance π away in position, except that the slices

added to the original three have negative amplitude in this new group. The population

k̄/2 away from the center of the wave packet integrates to zero when computing the
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Figure 6.4: Phase space corresponding to the experimental conditions for the data in

Fig. 6.5 (α = 10.5). A schematic representation of the atomic initial state is superim-
posed in red on the upper island (k̄ = 2.08), showing the subrecoil structure that we
expect from the state-preparation procedure. A magnified view of the upper island and

initial quantum state is also shown.
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Figure 6.5: Observation of coherent tunneling oscillations in the momentum-distri-

bution evolution between the two symmetry-related islands of stability, as shown in

Fig. 6.4. The two island centers are separated in momentum by 8 · 2�kL. In this plot,
the distribution was sampled every 40 µs (every 2 modulation periods). Each of the

distributions represent averages over 20 iterations of the experiment.
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Figure 6.6: Detailed view of the first four highlighted distributions in Fig. 6.5, where it is

clear that a significant fraction of the atoms tunnel to the other island. The distributions

here were averaged over 100 iterations of the experiment.
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p marginal distribution, and the population is only in the vicinity of the island when

computing the x marginal distribution. These extra structures represent coherence of

the wave packet over multiple wells of the potential, where the coherence length scales

as the inverse of the width of the narrow slices. Finally, we note that the initial condition

plotted here assumes a minimum-uncertainty Gaussian, but in the experiment the wave

packet was distorted slightly by anharmonic evolution in the lattice during the state

preparation.

6.3.2 Broken Symmetry

The subrecoil Raman velocity selection is important not only to produce a nearly uncer-

tainty-limited wave packet, but also in order to satisfy a quantum symmetry required

to observe tunneling. This symmetry stems from the discrete translational symmetry of

the potential, as discussed in Chapter 2, which causes momentum transitions to occur

in discrete steps of k̄ (or 2�kL in unscaled units). Thus the momentum state |nk̄ + δ〉

(where n is an integer) is coupled to the |−nk̄ + δ〉 state via 2-photon transitions. For

0 < |δ| < k̄/2, these states are therefore not coupled to their symmetric reflections

about p = 0. In the language of the double-well potential above, this situation is equiv-

alent to an asymmetric double well, because the potential couples two states with a

difference of 2nk̄δ in energy. Thus, complete tunneling only fully occurs for the |nk̄〉

momentum states and is suppressed for states off this integer ladder. A deviation in

momentum from this symmetric ladder is equivalent to a broken time-reversal symme-

try [313], and the symmetric/antisymmetric doublet character can be sensitive to this

broken symmetry [310]. This symmetry condition is automatically fulfilled for a rotor,

because the periodic boundary conditions select the tunneling states, but in the case of

a particle in an extended potential, as in the present experiment, careful state prepara-

tion is required to populate only the proper states. Thus the subrecoil velocity selection,

coupled with the rest of the state-preparation sequence, fulfills the simultaneous goals

of producing a wave packet localized on an island of stability and populating only states
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with momentum nearly an integer multiple of k̄.

The importance of the subrecoil momentum selection is demonstrated in Fig.

6.7, where the evolution of 〈p〉 corresponding to the data in Fig. 6.5 (with an 800 µs Ra-

man selection pulse) is shown, along with data for 400 and 200 µs Raman pulses. Shorter

Raman pulses result in wider velocity slices, so that fewer of the atoms fulfill the sym-

metry condition, and thus the tunneling oscillations are suppressed as the Raman pulse

duration decreases. Also shown is the case where the experiment was performed without
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Figure 6.7: Comparison of tunneling oscillations for different Raman π-pulse durations,
and thus selected velocity widths (α = 10.5, k̄ = 2.08). The strongest oscillations
shown here (circles) correspond to the longest (800 µs) Raman velocity selection pulse
used, which implies a momentum slice with a HWHM of 0.03 · 2�kL. The data here
are derived from the momentum distributions in Fig. 6.5. Also shown are data for a 400
µs selection pulse (corresponding to a HWHM of 0.06 · 2�kL) and a 200 µs selection
pulse (corresponding to a HWHM of 0.12 · 2�kL), illustrating the reduced contrast in
the tunneling oscillations as the pulse duration is decreased. The heavy solid line cor-

responds to a measurement where no Raman velocity selection was performed, but the

atoms were subjected to the state-preparation sequence after cooling in the 3D lattice

(where they have a HWHM in momentum of 0.8 · 2�kL). The tunneling oscillations are
completely suppressed in this last case. The data were averaged over 20 (800 µs tag),
10 (400 µs tag), 5 (200 µs tag), and 1 (no Raman tag) iterations of the experiment.
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any Raman velocity selection, and the state-preparation sequence in the 1D lattice was

performed immediately after cooling in the 3D lattice. The momentum distribution af-

ter the atoms were released from the 3D lattice was not subrecoil, so the prepared wave

packet was no longer minimum uncertainty (the wave-packet area in phase space was

about three times the size of a minimum-uncertainty state). More importantly, though,

there was no subrecoil structure in this last case, so that the tunneling oscillations are

completely absent in the figure. The evolution of the momentum distribution in this

case is shown in Fig. 6.8. There is perhaps a half of a tunneling oscillation at the be-

ginning of the evolution, but the oscillations are again clearly suppressed. Most of the

atoms have suppressed tunneling amplitudes, because they are too far away from the

proper tunneling momenta. Also, because there is a continuum of states populated near

the symmetric ladder, the different momentum classes tunnel at slightly different rates.

Figure 6.8: Evolution of the momentum distribution as in Fig. 6.5, but without Raman

velocity selection. The tunneling oscillations are clearly suppressed here.
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This situation provides another mechanism for damping of the coherent oscillations,

similar to broadened excitation of a two-level atom.

We also studied this broken symmetry more directly by fixing the velocity-

selection width at the minimum value and varying the locations of the velocity slices

within the Gaussian profile. This was accomplished easily by slightly varying the detun-

ing of the Raman pulse before loading the atoms into the standing wave. The experi-

mental results are shown in Fig. 6.9, where the data with the optimum Raman detuning

are compared to data with two other Raman detunings. As the detuning increases, the

tunneling oscillations are again suppressed, being almost fully destroyed for an offset

corresponding to 0.12 ·2�kL in momentum. The tunneling is thus quite sensitive to this

broken symmetry.

Fig. 6.10 shows simulations of the tunneling oscillations that model the Raman
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Figure 6.9: Comparison of tunneling oscillations for different Raman detunings (α =
10.5, k̄ = 2.08). The strongest oscillations observed (circles) correspond to Raman

velocity selection at p = 0. The other two cases are for velocity selection at p = 0.05 ·
2�kL (squares), where the oscillations are partially suppressed, and p = 0.12 · 2�kL
(triangles), where the oscillations are almost completely suppressed.
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tag widths in Fig. 6.7 as well as oscillations in the limit of arbitrarily narrow velocity

selection (i.e., the rotor case). The simulation assumes an overall profile of a minimum-

uncertainty wave packet with the same center and momentum width as in the exper-

iment, along with ideal Raman π-pulse momentum-selection profiles. With no width,

there are no signs of damping, and the tunneling is nearly complete. With wider mo-

mentum slices, a smaller fraction of the atoms successfully tunnels, and the tunneling

oscillations become increasingly damped. The Raman tagging thus explains a substan-

tial part of the incomplete tunneling and damping in the experiment. In principle, then,

a Raman tagging pulse even longer than 800 µs could have provided more complete tun-

neling, although such a pulse was impractical, as the atoms would have fallen too far

with respect to the beams over the course of the experimental sequence.
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Figure 6.10: Simulation of the effects of the Raman tag width on the tunneling signal

(α = 10.5, k̄ = 2.077). The average momentum 〈p〉 is plotted every 20 µs modulation
period for a single, minimum-uncertainty wave packet with an overall Gaussian envelope

(out of which the Raman-selected slices are taken) centered at (x0, p0) = (0, 4.1 ·2�kL),
with σp = 1.1 · 2�kL, to model the experimental conditions in Fig. 6.7. This calculation
assumes idealized (square) π-pulse lineshapes, as in Eq. (5.26), for the Raman pulse

durations used in the experiment. The case of an arbitrarily narrow velocity selection is

also shown, which maximizes the tunneling-oscillation amplitude.
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Finally, the reader may have noticed that the average momenta 〈p〉 in the ex-

perimental plots are reduced in magnitude compared to what one might expect. This

is especially evident at the beginning of the evolution, where the average momentum

appears to be around 3.3 · 2�kL, even though the distribution is peaked at 4.1 · 2�kL.

This effect is an artifact of the reduction of the distributions to average values, where

the broad backgrounds of the distributions and the truncation at large momenta (the

k̄ = 2.08 data are truncated beyond ±9 · 2�kL and the k̄ = 1.04 data are truncated

beyond ±14.1 · 2�kL) skew the computed means to have magnitudes that are smaller

than their actual values.

6.3.3 Tunneling Dependence on Wave-Packet Location

To argue that the observed tunneling was indeed between islands of stability, it was

important to demonstrate that the tunneling is sensitive to the location of the wave

packet in phase space. Just after the state preparation sequence for the above experi-

ments, the wave packet was moving. Thus, it was possible to displace the initial wave

packet in the x-direction in phase space simply by inserting a time delay between the

usual state-preparation procedure and the amplitude-modulated lattice phase of the ex-

periment. Doing so produced a shift of the wave-packet center, where the distance was

proportional to the time delay, along with a shear of the profile of the wave packet due

to dispersion effects. Fig. 6.11 shows the usual zero-delay case compared to data with

three different time delays, corresponding to displacements of 1/4, 1/2, and 1 full pe-

riod of the lattice potential. Schematic plots of the initial conditions in the classical

phase space are shown in Fig. 6.12 for these four cases. The tunneling oscillations are

strongest for zero time delay, when the wave packet was centered on the island. For

the 1/4-period displacement, the wave packet was centered in the chaotic region next

to the island, and the tunneling oscillations are significantly suppressed. For the 1/2-

period displacement, the wave packet was centered in the outer stability region, and

the tunneling oscillations are almost completely suppressed. For the longest time de-
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lay, the wave packet was displaced by a full period of the potential and thus is again

centered on the island. The tunneling oscillations return in this case, but with smaller

amplitude due to the stretched character of the wave packet after the dispersive free

evolution. Hence, it is clear that the islands of stability were important in supporting

the tunneling in this experiment.

We have also displaced the center of the wave packet in the p-direction in phase

space by changing the amplitude of the lattice phase shift during the state preparation

(and adjusting the subsequent evolution period in the lattice accordingly). For the ex-

perimental parameters here, we varied the wave packet center in steps of 0.5 · 2�kL, and
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Figure 6.11: Comparison of chaos-assisted tunneling (α = 10.5, k̄ = 2.08) for different
free-drift times before the standing-wave interaction, which amount to different dis-

placements of the initial condition in the x-direction in phase space, as illustrated in
Fig. 6.12. The strongest oscillations occur for zero drift time (filled circles), where the

initial wave packet is centered on the island of stability as in Fig. 6.4. The oscillations

are significantly suppressed for a 3.8 µs drift time (squares), which displaces the initial
wave packet center by 1/4 of a period of the standing wave. Tunneling oscillations are
completely suppressed for a 7.6 µs drift time (triangles), corresponding to a 1/2-period
offset of the initial wave packet. For a 15.1 µs drift time (open circles), the wave packet
is again centered on the island, and coherent oscillations are restored. The data here

were averaged over 20 iterations of the experiment.
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we observed strong tunneling when the wave packet was centered at p/2�kL = 3, 3.5,

and 4, while tunneling was suppressed at the other values outside this range.

6.4 Chaos-Assisted Tunneling

In considering the tunneling phenomenon in the experiment, we have thus far focused

only on the role of the islands of stability in the tunneling. However, as we will now dis-

cuss, the chaotic region surrounding the islands is important in enhancing the tunneling

0.0 µs delay 3.8 µs delay

7.6 µs delay 15.1 µs delay

Figure 6.12: Initial conditions in phase space for the four time delays used in obtaining

the data of Fig. 6.11. The large ellipse around the three narrow population slices in each

case marks the overall profile of the wave packet to guide the eye.
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process, and we will argue that the tunneling in the experiment is due to chaos-assisted

tunneling.

The possibility of tunneling enhancement by classical chaos was first introduced

in a numerical study by Lin and Ballentine [319], where it was found that the tunneling

rate between islands of stability in the periodically driven, double-well potential could

be orders of magnitude larger than the tunneling rate in the undriven (integrable) dou-

ble well. While the presence of two islands related by a discrete symmetry is important

in supporting the tunneling in this system [320], the authors attributed the increased

tunneling rate to the presence of the chaotic region in the classical phase space. It

was subsequently shown that the tunneling rate is correlated with the degree of overlap

of the tunneling states with the chaotic region [321], which also points to the role of

the chaotic sea as a catalyst for the tunneling. This enhancement of the tunneling was

understood in [306, 322] (where the term “chaos-assisted tunneling” was introduced)

in terms of an avoided crossing of the tunneling doublet with a third level associated

with the chaotic region, which can greatly increase the tunnel splitting. Because the

(quasi)energies of the chaotic states exhibit strong and irregular dependence of the

system parameters, the tunneling rate also exhibits irregular fluctuations over orders

of magnitude [323–325], sometimes reaching zero for exact crossings of the tunneling

doublet (the “coherent destruction of tunneling” [326]). The smooth, universal depen-

dence of the tunneling rate on �, as mentioned above for the double-well tunneling, is

therefore lost for chaos-assisted tunneling. In addition to this three-state picture, chaos-

assisted tunneling has also been understood in terms of the dominance of indirect paths,

which are multi-step paths that traverse the chaotic region, over direct paths, which tun-

nel in a single step and are responsible for regular (two-state) tunneling [327]. Thus,

chaos-assisted tunneling occurs as small portions of the population from the initial wave

packet break off, transport through the chaotic region, and then accumulate in the sym-

metric region, without a large population building up in the chaotic region [306, 328].

By contrast, direct tunneling occurs with an always negligible population in the inter-
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mediate region.

The sense in which we mean “chaos-assisted tunneling” here is the influence

of the chaotic region on tunneling transport between symmetry-related regions in phase

space, but this term has also been applied in the sense of open systems, where the

tunneling implies an escape from a bound state. In this vein, chaos-assisted tunneling

has been invoked to explain fluctuations in the energy and rate of ionization of Rydberg

atoms in microwave fields [329], and also to explain mode lifetimes in weakly deformed

optical micro-resonators [330].

Previous experimental work in chaos-assisted tunneling has been performed in

the spectroscopy of a microwave resonator in the shape of an annular billiard [88]. The

authors measured the dependence of the quasidoublet splittings on the locations of

the states in phase space and on the eccentricity of the cavity, demonstrating an en-

hancement in the splitting for states near the border between the stable and chaotic

regions. Chaos-assisted tunneling has also been invoked to explain features in the decay

of superdeformed nuclear states to normal-deformed states [331], although the inter-

pretation here is not entirely straightforward [328]. It is also worth noting that another

atom-optics experiment studies tunneling of atoms in an optical lattice of double wells

[332], where the classical description is chaotic as a result of the coupling of the center-

of-mass motion to the spin state of the atom [333]. So far, though, the symptoms of

chaos-assisted tunneling that we describe below have not been observed in this system.

Other experiments [80, 81] consider the transport in the resonant tunneling diode,

where a strong magnetic field induces chaos in the classical limit. However, the tunnel-

ing here is enhanced by energy resonances of states on either side of a barrier (corre-

sponding to periodic orbits in the chaotic quantum-well region), and thus the tunneling

is not enhanced by the chaos in the sense of this chapter.
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6.4.1 Singlet-Doublet Crossings

We will now review the simplified three-state model introduced in [306, 322] because

of its importance in understanding chaos-assisted tunneling and its utility in interpret-

ing the experimental data. Because we are considering a periodically driven system,

though, we will consider a Floquet-Hamiltonian model as in [334], rather than the orig-

inal Hamiltonian model. We recall from Section 4.5.1 that the Floquet states are eigen-

states of the unitary evolution operator U(t + 1, t) over one period of the modulation,

with eigenvalue exp(−iεn/k̄), where εn is the quasienergy. The eigenstates can also be

written as

|ψn(t)〉 = e−iεnt/k̄|χn(t)〉 , (6.13)

where the state |χn(t)〉 is periodic in time with the same period as the modulation.

Thus, the quasienergies represent the phase evolution of the Floquet states (in a stro-

boscopic sense), just as the energies govern the phase evolution of the energy eigen-

states for autonomous systems. The periodic states |χn(t)〉 are also eigenstates of the

Floquet Hamiltonian [325],

H := H − i�∂t, (6.14)

with eigenvalue εn. We will therefore construct a model Floquet Hamiltonian that cap-

tures the essence of chaos-assisted tunneling.

We consider a doublet of tunneling states, localized on the two islands of sta-

bility (regular regions), with quasienergies εr and εr + δr, so that δr parameterizes the

tunneling rate in the absence of interaction with other levels. These states have op-

posite parity, and for the sake of concreteness, we can take the state with quasienergy

εr to be of even parity. We also consider a third state in the chaotic region (although

we note that three-level crossings can also be induced by states in other stable re-

gions [327, 335, 336]), with quasienergy εr + ∆c. Without loss of generality we may

assume that this state has even parity; notice that the states in the chaotic region do

not generally occur in narrowly spaced doublets, so that we can ignore the effect of the
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corresponding state of odd parity. The chaotic state does not interact with the odd

member of the tunneling doublet, but we assume that there is some nonzero interac-

tion between the two even states. We may then write the model Floquet Hamiltonian

as [306, 322, 334]

H =


 εr + δr 0 0

0 εr β/2
0 β/2 εr +∆c


 , (6.15)

where β represents the coupling between the chaotic state and the even regular state.

Thus, the two coupled states undergo an avoided crossing, with quasienergy solutions

of the same form as in the two-level case in Eqs. (6.5)-(6.8), while the odd regular state

remains unchanged. This behavior is illustrated in Fig. 6.13. In the case where the

coupling energy β/2 is large compared to the two-level splitting δr (which is the case
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Figure 6.13: Illustration of a three-level avoided crossing of a tunneling doublet with

a third (chaotic) state, as described by the model (6.15). The behavior of the three

quasienergies is shown as a function of the detuning ∆c of the chaotic state, for an

unperturbed doublet splitting δr/β = 0.1. The chaotic state interacts with the regular
state of the same parity (both shown as blue lines), and the other tunneling state (the

green line) is unaffected by the crossing in this simple model. The dashed lines show

the two repelling states in the absence of any coupling.
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when the regular states have substantial overlap with the surrounding chaotic region),

the tunnel splitting can be greatly enhanced, becoming of the order of β/2 between the

odd state and either of the even states near the center of the crossing. As one might

expect in an avoided crossing, the even regular state and the chaotic state exchange

their character as ∆c is swept through zero, as verified numerically in [337]. Thus, near

the center of the crossing, the two even states each have population both in the islands

and in the chaotic region, whereas away from the crossing it is possible to clearly distin-

guish a predominantly regular and predominantly chaotic even state. In a singet-doublet

crossing, one expects a complicated time dependence, compared to the sinusoidal two-

state tunneling, because three states will be excited by a wave packet localized on a

single island. In general, the three splittings will all be different, leading to complicated

beating in the time domain [334].

6.4.2 Comparison with Integrable Tunneling

The tunneling that we have studied is between two oppositely directed modes of mo-

tion. In unmodulated optical lattices, however, Bragg scattering is a well-known dynamical-

tunneling mechanism, as we discussed in Section 2.7.1. Bragg scattering produces sim-

ilar results to the tunneling that we have described, including sensitivity to the same

broken symmetry that we discussed above, even though there is no classical chaos with-

out a modulation of the lattice. It was therefore important to demonstrate that the

tunneling here is not simply Bragg scattering, but that the amplitude modulation has

a substantial effect on the tunneling dynamics. We have done this already to a certain

extent by demonstrating that the initial state must be centered on the island of sta-

bility for tunneling to occur (Bragg scattering occurs between plane-wave states, which

are delocalized in position, and thus should not be sensitive to spatial displacements of

the initial condition). However, a direct comparison between tunneling in chaotic and

integrable systems is also illuminating.

A sensible integrable counterpart of the modulated system arises by using the
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optical lattice with constant amplitude, where the potential depth is taken to be V0.

Doing so produces a pendulum, such that the lattice intensity is the same, on average, as

in the amplitude-modulated system. The phase space for the pendulum corresponding

to the experimental conditions in Fig. 6.4 is shown in Fig. 6.14, along with the same

initial condition as before. The wave packet is centered outside the separatrix, so that

classical transport to the opposite momentum region is also forbidden here. However,

Figure 6.14: Phase space of the pendulum, with the same average potential amplitude

as the modulated-pendulum case in Fig. 6.4. The same initial condition is also shown

here. The initial state is centered outside the separatrix, so that classical transport to

the opposite (symmetric) momentum region is also forbidden here. Notice that the

momentum axis is in pendulum scaled units (i.e., multiples of 2�kL), rather than the
scaled units for the modulated pendulum.
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high-order Bragg scattering, which is a manifestation of quantum above-barrier reflection

[338], allows quantum oscillatory transport between these momentum regions.

We recall from Section 2.7.1 that the Bragg oscillation frequency is

Ω′B,n =
αn

k̄2n−1[(n− 1)!]2 , (6.16)

when adapted to the scaled units of the amplitude-modulated pendulum. In this form, it

is not obvious that Bragg scattering has the expected universal dependence exp(−S/k̄)

for two-state tunneling that we mentioned above. Since tunneling occurs from some

initial momentum (n/2)k̄ to−(n/2)k̄ (for integer n) as an nth-order scattering process,

the order n is effectively a function of k̄. Then, in the semiclassical limit of large n, we
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Figure 6.15: Comparison of chaos-assisted tunneling oscillations (circles) to transport in

the corresponding quantum pendulum (squares). The experimental conditions are α =
10.5 and k̄ = 2.08 in the modulated case, with the same average intensity used in the
pendulum case. No tunneling oscillations are observed in the pendulum case over the

interaction times studied in the experiment. The expected period for 8th-order Bragg
scattering is 1 s, which is much longer than the 400 µs period of the tunneling between
islands of stability. The data here were averaged over 20 iterations of the experiment.
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can invoke Stirling’s approximation, and the Bragg rate becomes

Ω′B,n � 1
2π

[
(2p)2

αe2

]−p/k̄
, (6.17)

which is consistent with the expected scaling with k̄. Notice that the factor in the

square braces is greater than unity, since to be in the Bragg regime (where population

in the intermediate states can be adiabatically eliminated) the wave packet must be

outside the classical pendulum separatrix, which implies that |p| > 2√α.

The tunneling oscillations of Fig. 6.5 are compared with the behavior of the

corresponding pendulum in Fig. 6.15. No tunneling oscillations are visible in the inte-

grable case over the time scale studied in the experiment. Since the initial distribution

is peaked near 4 · 2�kL, the dominant transport process in the pendulum is 8th-order

Bragg scattering. For n = 8, α = 10.5, and k̄ = 2.08, the Bragg period is about 1 s, which
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Figure 6.16: Tunneling oscillations for α = 11.2, k̄ = 1.04 (10 µs modulation pe-

riod). The corresponding two-state (integrable) tunneling mechanism is 16th-order
Bragg scattering, which has an expected period of 20 years. The observed tunneling rate
is clearly much smaller than the expected Bragg period. The data here were averaged

over 10 iterations of the experiment.
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is much longer than the 400 µs period of the tunneling oscillations in the chaotic case

(and thus the experimental Bragg measurement is in accord with our expectations).

We have also demonstrated tunneling in a parameter regime that is closer to the

classical limit (k̄ = 1.04), as shown in Fig. 6.16. The initial distribution here is peaked

around 8 · 2�kL, and so this coherent, 32-photon process is similar to 16th-order Bragg

scattering. The expected Bragg period here is 20 years, which is long compared to the

250 µs period of the tunneling in the chaotic case, and is even long compared to the

coherence time of a graduate student. Thus, it is clear that in some sense the chaos

enhances the transport, in that the tunnel splittings are much larger in the chaotic case

than in the corresponding integrable case.

Of course, it could be the case that the amplitude modulation enhances the

two-level tunneling rate without the influence of a third, chaotic state, especially in

view of the rapid dependence of the Bragg splitting on the lattice intensity. Although

we provide additional experimental evidence for chaos-assisted tunneling below, we will

now derive a simple estimate for the direct tunneling rate with the modulation. Since

Bragg scattering represents the two-level transport mechanism in this system, and cor-

responds to a resonantly coupled two-level system if the proper momentum symmetry

condition is satisfied, we can use the well-established solution to the two-level atom

(without damping) exposed to a resonant driving field with time-dependent intensity

[339]. In this case we define the pulse integral,

φ =
∫ t

0
ΩB,n(t′) dt′ , (6.18)

in terms of which the tunneled population can be written as sin2(φ/2) (note that φ =

ΩB,nt for constant drive, as in normal Bragg scattering). Since the tunneling period is

substantially longer than the modulation period, we can simply average the Bragg rate

over a modulation period, and thus the modulation enhances the two-level tunneling

rate by a factor ∫ 1

0
[2 cos2(πt)]n dt (6.19)
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for nth-order transport. This factor is about 50 for the k̄ = 2.08 case and about 9000 for

the k̄ = 1.04 case. Neither of these numerical values is sufficiently large to explain the

enormous differences in the tunneling rates in the integrable and chaotic cases.

6.4.3 Tunneling Dependence on Parameter Variations

To establish that the tunneling in the modulated lattice is chaos-assisted tunneling, it

is also important to examine the dependence of the tunneling as the two experimental

parameters (α and k̄) are varied. As we noted above, the dependence of the tunneling

rate should be very different for direct and chaos-assisted tunneling. In this section, we

examine the variation of the tunneling as a function of α for two different values of k̄.

Operationally, α is a much more convenient parameter to vary, because it only requires

a change in laser intensity, whereas k̄ is more difficult because it requires changing both

the laser intensity and the modulation period (to keep α fixed) as well as a new set of

parameters for the SPASM state preparation (to maintain the initial condition at the

same phase-space location). While we do not necessarily expect to see rapid variations

in the tunneling rate as we vary α, due to inhomogeneous broadening (different atoms

see different optical intensities, depending on their transverse location in the optical

lattice, leading to about a 5% spread in α over the atomic sample), there are nevertheless

signatures of three-state tunneling in the data.

The dependence of the tunneling oscillations in the measured evolution of

〈p(t)〉 is shown in Fig. 6.17 for k̄ = 2.08. Tunneling is visible in the range of α from about

7 to 14, but is suppressed outside this range. Below this range the tunneling is presum-

ably too slow to be observed (see the Floquet-spectrum analysis in the next section),

and above this range the outer islands have completely dissolved into the chaotic sea, so

that we no longer expect clean tunneling to occur. The tunneling rates for this data are

plotted in Fig. 6.18. The tunneling rate does not fluctuate strongly as α changes, but

there are two interesting features to notice. The first is that the tunneling rate decreases

as a function of α. This dependence is the opposite of our expectation of direct tunnel-
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ing, where as we have seen above the tunneling rate should increase with α, following

a power-law dependence. This behavior is thus strong evidence that the tunneling is

chaos-assisted, where one or more chaotic levels has a definite influence on the doublet
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Figure 6.17: Dependence of the tunneling as the optical-lattice intensity α is varied for

k̄ = 2.08 (20 µs modulation period). The color indicates the value of 〈p〉, with black
representing the most negative values and white the most positive. The tunneling is

absent at the extreme values of α shown here, but tunneling oscillations appear in the
center of the α range. This behavior is consistent with the avoided-crossing mechanism
for chaos-assisted tunneling. The data here were averaged over 10 iterations of the
experiment.
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splitting. The second feature to notice is that two frequencies are clearly resolvable in

the tunneling in a comparatively narrow window in α (from about 8.5 to 10.5). The

one- and two-frequency behaviors of the tunneling are illustrated in Fig. 6.19, where

one tunneling frequency is evident (for α = 8.0), and in Fig. 6.20, where the beating

of two frequencies is clearly apparent (for α = 9.7). Thus, there is some sensitivity of

the tunneling to variations in α in this regime. This behavior is also consistent with the

three-state model near the center of a singlet-doublet crossing. In this model, the initial

wave packet populates a regular state (localized on the islands) and two hybrid states,

which have population in both the islands and in the chaotic sea. There should thus

be two frequencies associated with the tunneling, corresponding to the two splittings

between the regular state and the two hybrid states. In general, these two splittings will

not be equal, but should be similar near the center of the avoided crossing, leading to
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Figure 6.18: Dependence of the tunneling rate on the well depth α, for k̄ = 2.08 (20 µs
modulation period). The periods were extracted from the data in Fig. 6.17 using both

numerical Fourier transform and nonlinear fitting techniques. The error bars account

for both fitting uncertainty and the width of the spectral peaks. In the range of α from

8.9 to 10.3, two distinct frequencies can be resolved in the tunneling data. The zero-
frequency data points at the edges of the plot indicate that no tunneling frequency could

be extracted from the data at these locations.
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Figure 6.19: Example of tunneling oscillations from Fig. 6.17, where a single tunneling

frequency persists for the maximum duration of the optical-lattice interaction. The

parameters are α = 8.0, k̄ = 2.08. The data points are connected by lines for clarity.
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Figure 6.20: Example of tunneling oscillations from Fig. 6.17, where two tunneling fre-

quencies are clearly present. The parameters are α = 9.7, k̄ = 2.08. The data points
are connected by lines for clarity.
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two-frequency beating in the tunneling dynamics.

The variation of the tunneling behavior in the k̄ = 1.04 case is plotted in

Fig. 6.21, with the extracted tunneling rates plotted in Fig. 6.22. The observed tun-

neling rates appear to have weaker dependence on α than in the k̄ = 2.08 case. How-

ever, the tunneling is only visible in a much narrower interval in α, from about 9.5 to
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Figure 6.21: Dependence of the tunneling as the optical-lattice intensity α is varied for
k̄ = 1.04 (10 µs modulation period). The color indicates the value of 〈p〉. The behavior
here is qualitatively similar to the behavior in Fig. 6.17, but the tunneling occurs in a

substantially narrower interval in α. The data were averaged over 10 iterations of the
experiment.
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12.5. Thus, in a sense, the tunneling here is more sensitive to variation in α than in the

k̄ = 2.08 case.

One question that remains is why the tunneling rate does not go smoothly to

zero at the edges of the α intervals where tunneling is observed, especially at the lower

end of the interval where the tunnel splitting is expected to become very small. In the

experiment, the disappearance of the tunneling as α is swept comes about as the oscil-

lations decrease in amplitude and become damped more quickly, until the oscillations

are no longer discernible. One possible explanation is the change in the location of the

two islands, which move to larger momentum as α increases (see the next section for an

empirical expression for the island locations). In the experiment, the initial condition

was held fixed as α is swept, so that there may have been less overlap with the tun-

neling Floquet states if the islands moved too far. However, over the intervals where
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Figure 6.22: Dependence of the tunneling rate on the well depth α, for k̄ = 1.04 (10 µs
modulation period). The periods were extracted from the data in Fig. 6.21 using both

numerical Fourier transform and nonlinear fitting techniques. The error bars account for

both fitting uncertainty and the width of the spectral peaks. The zero-frequency data

points at the edges of the plot indicate that no tunneling frequency could be extracted

from the data at these locations.
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tunneling was observed, the islands moved only by ±0.3 · 2�kL for both the k̄ = 2.08

and the k̄ = 1.04 data sets, which is a substantially smaller amount than the respective

σp = 1.7 · 2�kL and σp = 2.1 · 2�kL momentum uncertainties of the initial condi-

tions in the two cases. Thus, misalignment of the initial conditions does not account

for the disappearance of the tunneling at the extreme α values here. Another possible

explanation lies in a suggestion by [340] that three-level tunneling is more robust to a

symmetry-breaking interaction than two-level tunneling. Since the range of populated

quasimomenta (and thus the degree of broken symmetry) is fixed by the Raman veloc-

ity selection, the tunneling away from the avoided crossings may simply disappear, as

opposed to being manifested as a slow tunneling oscillation.

6.4.4 Floquet Spectra

In the context of understanding the observed tunneling dependence on α, it is useful to

consider the quasienergy spectrum for this system. Computed spectra for the k̄ = 2.077

and k̄ = 1.039 cases are plotted in Figs. 6.23 and 6.24, respectively. These spectra only

show the states with definite parity, falling on the symmetric ladder of momentum states

p = nk̄ (for integer n), corresponding to zero quasimomentum. The quasienergies were

calculated by numerically constructing the unitary evolution operator for one period

of the modulation and then diagonalizing the resulting operator. The even and odd

tunneling states are also highlighted in these spectra. These states were identified by

finding the states with maximum overlap with a minimum-uncertainty Gaussian wave

packet that was centered on the fixed point of the island and had the same aspect ratio

as the elliptical trajectories near the fixed point (i.e., where the linearized equations

of motion are valid). The centers of the outer islands are given approximately by the

empirical model

p0 = ±(2π + 0.1988 · α + 0.002953 · α2 − 0.0000327 · α3) (6.20)

(with x = 0), which is accurate at about the 0.02% level from α = 0 to the critical

value αc ≈ 11.54 where these islands become unstable and bifurcate into pairs of is-
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lands. The aspect ratio of the elliptic invariant surfaces near the island centers is given

approximately by the empirical model

∆p
∆x

=
√
α(α− αc)(−0.0439 + 0.00151 · α+ 0.0000170 · α2) , (6.21)
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Figure 6.23: Calculated quasienergy spectrum for k̄ = 2.077, corresponding to a 20
µs modulation period. Quasienergies that correspond to states with large momentum

(that do not interact with the states shown in this range of α) are suppressed, and the
quasienergies shown are for the symmetric momentum ladder (zero quasimomentum).

The quasienergies for even-parity Floquet states are shown in green, while the odd-

parity states are shown in blue. The even (orange) and odd (red) states with maximal

overlap with the outer stable islands are shown, up to the point where the islands bifur-

cate, as described in the text. The avoided-crossing behavior of the tunneling states is

apparent over a broad range of α, where two chaotic states have a clear influence on the

tunneling-doublet splitting.
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which is accurate to the 1% level or better in the same range. The tunneling states are

not identified for α > αc, where it is difficult to assign states to the island remnants.

In the spectrum for k̄ = 2.077, the first avoided crossing (with an even-parity

state of smaller quasienergy) does not occur until about α = 7, where the splitting
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Figure 6.24: Calculated quasienergy spectrum for k̄ = 1.039, corresponding to a 10
µs modulation period. Quasienergies that correspond to states with large momentum
(that do not interact with the states shown in this range of α) are suppressed, and the

quasienergies shown are for the symmetric momentum ladder (zero quasimomentum).

The quasienergies for even-parity Floquet states are shown in green, while the odd-

parity states are shown in blue. The even (orange) and odd (red) states with maximal

overlap with the outer stable islands are shown, up to the point where the islands bi-

furcate, as described in the text. Several avoided crossings of the tunneling doublet

with chaotic states are apparent, although the splitting only becomes very large around

α = 10.
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also first becomes significant. This behavior is consistent with the experimental data

in Fig. 6.17, where tunneling oscillations are also first observed around α = 7. Beyond

this point, the two even-parity states maintain a similar distance from the odd tunneling

state, and this holds true in the regime where two tunneling frequencies are visible in

the data. These two even states then move back towards each other (and the odd tun-

neling state) as they interact with two other even states, and this behavior may explain

the decreasing tunneling rate as a function of α, although it is again difficult to pinpoint

the tunneling states in this regime of large α.

In the k̄ = 1.039 spectrum, the singlet-doublet crossings are much more appar-

ent. There are several clear avoided crossings involving the tunneling doublet in the

range shown, but it is not until the final avoided crossing before the islands become

unstable that the splitting becomes large enough to observe experimentally. The ex-

perimental observation of tunneling beginning with α = 9.5 is thus consistent with the

spectrum, although another significant avoided crossing in the spectrum suggests that

tunneling might also be visible in a very narrow region around α = 8. The experimental

tunneling stops around α = 12.5, where the spectrum has become quite complicated

and the tunneling doublet can no longer be identified.

The tunneling rates from the calculated spectra here are in good agreement

with the observed rates in Figs. 6.18 and 6.22. For example, the two calculated tunnel-

ing rates for α = 10 and k̄ = 2.08 are 3.0 kHz and 2.3 kHz, and the calculated tunneling

rate for α = 11 and k̄ = 1.04 is 4.0 kHz, all of which match the observed tunneling rates

reasonably well. However, it should be noted that while these spectra provide a useful

basis for understanding the data, an interpretation based solely on these spectra would

most likely be too simplistic to be very useful. An accurate model would at minimum

need to take into account the excitation of multiple Floquet states by the initial con-

dition, the range of quasimomenta populated after the Raman velocity selection (as we

have done in Fig. 6.10), and the averaging over a range of α due to the transverse profile

of the optical-lattice beam.
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6.4.5 High Temporal Resolution Measurements

All of the data so far in this chapter have been sampled only at a particular phase of the

periodic driving, corresponding to integer times in the Hamiltonian (6.11). We will now

study the dynamics on a much finer time scale, which will reveal additional interesting

aspects of the tunneling dynamics. Figs. 6.25 and 6.26 show the tunneling dynamics for

k̄ = 2.08 (for two different values of α), and Fig. 6.27 shows the tunneling dynamics

for k̄ = 1.04; in all three figures, the momentum distribution was sampled 10 times per

modulation period, and the duration of the measurement covers approximately one full

period of the amplitude modulation. Besides the island-tunneling process, which is vis-
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Figure 6.25: Experimental momentum-distribution evolution of chaos-assisted tunnel-

ing for k̄ = 2.08 (T = 20 µs) and α = 7.7. The distribution was sampled every 2 µs out
to 400 µs, covering the first full tunneling oscillation. The classical oscillations (with
the same period as the modulation period) are evident, as well as more complicated os-

cillations into the intermediate chaotic/stable region near p = 0. The phase space (see
Appendix C) is characterized by the two (symmetry-related) tunneling islands as well

as a doublet of stable islands near p = 0. These distributions were averaged over 10
iterations of the experiment.



244

ible as the slowest oscillation, there are two other oscillatory motions that are common

to the three plots. The more obvious of these features appears as a fast oscillation of the

initial peak, with the same period as the modulation of the potential. As the atoms tun-

nel to the other island, the tunneled peak oscillates in a complementary fashion. This

motion can be understood in terms of the classical phase-space dynamics. A particular

phase space for this system assumes a particular sampling phase for the dynamics; for the

phase spaces in Appendix C, the sampling phase is the same as that used for the previ-

ous data in this chapter. To understand the present phenomenon, though, it is necessary

to examine the phase space as the sampling phase varies, as illustrated in Fig. 6.28. Be-

cause of the periodic time dependence of the potential, the time parameter acts as a
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Figure 6.26: Experimental momentum-distribution evolution of chaos-assisted tunnel-

ing for k̄ = 2.08 (T = 20 µs) and α = 11.2. The distribution was sampled every 2 µs out
to 400 µs, covering the first full tunneling oscillation. The conditions are otherwise simi-
lar to those in Fig. 6.25; the oscillations in the chaotic region occur in different locations,

compared to the previous case. The phase space (see Appendix C) is characterized by

the two (symmetry-related) tunneling islands with only small remnants of the island

near p = 0. These distributions were averaged over 10 iterations of the experiment.
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third dimension in phase space. Thus the islands of stability are “flux tubes” that con-

fine classical trajectories in the higher-dimensional phase space [341], and the islands

that appear in the phase plots (Poincaré sections) are cross sections of the flux tubes. As

time varies continuously, then, the islands move in opposite directions in phase space

according to their mean momenta. Additionally, the islands move in the momentum

direction, becoming furthest apart in momentum for integer sampling times and closest

together for half-integer times. This oscillation is only significant for relatively large val-

ues of α (away from the near-integrable regime), because of the mutual repulsion of the

three primary resonances in phase space. Thus, the fast oscillations of the experimental
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Figure 6.27: Experimental momentum-distribution evolution of chaos-assisted tunnel-

ing for k̄ = 1.04 (T = 10 µs) and α = 10.5. The distribution was sampled every 1 µs
out to 200 µs, covering the first full tunneling oscillation. The oscillations in the chaotic
region here are more difficult to see than in Figs. 6.25 and 6.26, because of the smaller

signal-to-noise ratio for these experimental conditions (the horizontal stripes are arti-

facts of the CCD camera). The phase space (see Appendix C) is characterized by the

two (symmetry-related) tunneling islands with only small remnants of the island near

p = 0. These distributions were averaged over 10 iterations of the experiment.
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momentum distributions can be attributed to the motion of the classical phase-space

islands.

The second oscillatory feature is the more relevant effect for demonstrating

chaos-assisted tunneling. This oscillation is slower than the classical oscillation but also

is substantially faster than the tunneling oscillation. It appears as an occasional enhance-

ment of probability in the (predominantly) chaotic region between the two islands. This

effect is particularly dramatic in the case of α = 7.7 and k̄ = 2.08 (Fig. 6.25). Here,

the first part of the tunneling transport takes place in (at least) two steps through the

chaotic sea, with the first chunk of probability crossing during the third period of the

potential and the second crossing during the fifth and sixth periods of the potential.

The population in the chaotic region is also enhanced at the time of maximum tunnel-

ing, where the population in the islands appears to jump in the center region for a short

time (during the tenth modulation period). Similar behavior is evident for α = 11.2 and

k̄ = 2.08 (Fig. 6.26); in this case, this third oscillation is not as pronounced, but is still

present. The details of this oscillation in the chaotic region are also slightly different

than in the previous case. This is especially true at the moment of maximum tunneling,

where the atoms are mostly in the two islands (unlike the case before, where the atoms

were mostly in the chaotic region), but the chaotic region is populated during the mod-

ulation periods just before and after this time. In the case of α = 10.5 and k̄ = 1.04

(Fig. 6.27), this oscillation is less visible because of the poorer signal/noise ratio (notice

that the atoms are spread over a much larger region in momentum for this value of k̄,

resulting in an effectively smaller signal). Nonetheless, the tunneling again proceeds in

chunks, with the transport visible as faint ridges crossing the chaotic region, especially

near the ends of the first, second, fourth, and fifth modulation periods. The tunneling

here in some sense resembles a Landau-Zener crossing [342], because the population

crosses between the islands at the times of closest approach.

This appearance of probability in the chaotic region during the tunneling is pre-

cisely the behavior expected from the picture of chaos-assisted tunneling of [306, 328]
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that we mentioned above, where tunneling occurs as parts of the wave packet break

away from the initially populated island, transport through the chaotic sea, and then

reassemble in the symmetric destination island. We also recall from the analysis of the

three-level model (6.15) of chaos-assisted tunneling that near the center of the avoided

crossing, the tunneling rate is given by the splitting(s) between the odd-parity regular

state taken pairwise with each of the two even-parity (regular/chaotic hybrid) states,

which is of the order β/2. On the other hand, it is the beating between the two hy-

brid states that determines the appearance of population in the chaotic region, and this

beating occurs at a rate of order β. Thus, we expect the oscillation of population to

be substantially faster than the tunneling oscillation. The oscillations observed in the

experiment do not appear to occur with a single frequency, so it may be necessary to

include couplings to other chaotic states in order to account more accurately for this

phenomenon.

6.4.6 Transport in the Strongly Coupled Regime

For even larger α than we have considered so far, the two symmetry-related islands of

stability disappear, and the quantum transport undergoes a transition to qualitatively dif-

ferent behavior than the above tunneling. This strongly coupled behavior is illustrated

in Figs. 6.29 and 6.30, where the momentum-distribution evolution is shown (sampled

on a fine time scale) for two large values of α. For α = 17.0 (Fig. 6.29), the three primary

resonances have disappeared, leaving a chaotic region with only very small stable struc-

tures, while for α = 18.9 (Fig. 6.30), there is a small island at the center of the phase

space (see Appendix C). The experimental measurement shows erratic oscillations of

the momentum distributions on a faster time scale than the tunneling observed above.

We can also understand this behavior qualitatively in terms of the Floquet states

of the system. For very small α, the Floquet spectrum consists of nearly degenerate

doublets associated with KAM tori, and as α increases the doublets break apart as their

associated invariant structures become unstable [321, 334]. In the regime that we con-
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sider here, where the stable structures have disappeared, the splittings are on the order

of the mean level spacing [334] due to level repulsion of the states in the chaotic region

[48]. This behavior of the splittings is apparent in the spectra in Figs. 6.23 and 6.24.

The Floquet states are no longer well localized in this regime, and thus the initial con-

dition excites several states. The observed behavior is the result of complicated beating

between the various populated states, and we expect a time dependence that is faster

than the tunneling due to the relatively large splittings involved.
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Figure 6.29: Experimental momentum-distribution evolution of chaos-assisted tunnel-

ing for k̄ = 2.08 (T = 20 µs) and α = 17.0. The distribution was sampled every 2 µs
out to 400 µs. The three primary islands of stability have dissolved into the chaotic
region in the classical phase space for this value of α (see Appendix C). The experimen-

tal momentum distributions show erratic oscillations in time. These distributions were

averaged over 10 iterations of the experiment.
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6.5 Noise Effects on Tunneling

The tunneling that we have described here is obviously an effect of quantum coherence,

and tunneling in classically chaotic systems is expected to be suppressed by dissipation

[334, 343], measurement [344], and noise [345]. Here we consider the effects of a noisy

perturbation of the optical-lattice intensity, so that the atomic center-of-mass Hamilto-

nian becomes

H =
p2

2
− 2α[1 + ς(t)] cos2(πt) cos(x) , (6.22)

where ς(t) is a randomly fluctuating quantity with a probability distribution peaked at

and symmetric about zero. This noise signal was generated digitally by picking nor-

mally distributed random deviates with a 10 MHz sampling rate. The noise was then
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Figure 6.30: Experimental momentum-distribution evolution of chaos-assisted tunnel-

ing for k̄ = 2.08 (T = 20 µs) and α = 18.9. The distribution was sampled every 1 µs out
to 200 µs. The two outer islands of stability are not present in the chaotic region in the
classical phase space for this value of α (see Appendix C). The experimental momen-

tum distributions show erratic oscillations in time. These distributions were averaged

over 5 iterations of the experiment.
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bandwidth-limited by a digital Chebyshev low-pass filter (see Section 6.5.1) before be-

ing applied to the AOM control signal. The cutoff frequency (0.5MHz for the k̄ = 2.08,

20 µs modulation period data, and 1 MHz for the k̄ = 1.04, 10 µs modulation period

data) was selected to be well within the 10 MHz modulation response of the AOM

driver and to make the noise spectrum the same in scaled units for different modulation

periods. The rms noise levels 〈ς2(t)〉1/2 that we quote correspond to the noise levels af-

ter the low-pass filter. Because the instantaneous noise level is proportional to the mean

intensity, truncation effects due to noise deviations falling outside the dynamic range

of the laser were rare except in the largest noise case that we consider here (62% rms).
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Figure 6.31: Illustration of amplitude noise applied to the optical lattice intensity, as

measured by a fast photodiode. The end of the SPASM state-preparation sequence is

visible at the beginning of the traces, where the lattice is ramped up and then remains

at a high level for several µs after the lattice phase is shifted. The sinusoidal modu-
lations begin immediately after the state preparation, and both the zero (dashed line)

and 15.7% (solid line) rms deviation cases are shown here. The noise effects are most

pronounced when the lattice is at the highest average intensity because the noise devia-

tion is always proportional to the local average intensity. These traces correspond to the

experimental settings for k̄ = 1.04, where the modulation period is 10 µs, and the noise
is filtered with a 1MHz cutoff frequency.
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An example of the optical lattice intensity for one particular realization of the noise is

illustrated in Fig. 6.31.

The response of the tunneling oscillations to the noise is illustrated in Fig. 6.32

for k̄ = 2.08 and 6.33 for k̄ = 1.04 (α = 11.2 in both cases). As one might expect,

the oscillations are destroyed as the noise level increases, causing damping of the oscil-

lations on progressively shorter time scales. At the largest levels of noise, classical-like

behavior (with noise) is recovered, in that the tunneling oscillations are suppressed.

The noise also has the “direct” effect of causing relaxation to p = 0, because the noise

permits transitions, both quantum and classical, out of the initial island of stability and

into the chaotic sea. The more interesting feature of this data, though, is that because

the value of α is fixed between the two measurements and the tunneling periods are

approximately the same (in scaled units), we can compare the sensitivity of the system
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Figure 6.32: Effects of applied amplitude noise on the tunneling oscillations for α =
11.2 and k̄ = 2.08. The rms noise levels are 0% (circles), 15.7% (squares), 31% (dia-

monds), and 62% (triangles). The tunneling is only completely suppressed at the 62%
level, and thus is substantially less sensitive than in the k̄ = 1.04 case in Fig. 6.33. The
data were averaged over 10 realizations of noise, and were sampled every 2 modulation
periods.
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to the noise for two different values of k̄. From the data we see that the tunneling os-

cillations are suppressed at a much lower level of noise for the k̄ = 1.04 case than in

the k̄ = 2.08 case (31% vs. 62% rms). Recalling that k̄ is the dimensionless Planck

constant in scaled units, this comparison indicates that the tunneling in this system

is more sensitive to decoherence as the system moves towards the classical limit (i.e.,

to a larger action scale compared to �). This behavior is consistent with theoretical

expectations, because for smaller k̄, the phase-space structure in chaotic systems satu-

rates on a smaller scale [346], thus being more easily influenced by decoherence (which

causes diffusion in phase space). Related experimental results have demonstrated that

Schrödinger-cat superposition states in the phase of a cavity field [142], in an atom in-

terferometer [140, 141], and in an ion trap [143, 144] are more sensitive to decoherence

when the separation of the components of the state increases (i.e., as the spacing of the

interference fringes decreases). The present experimental results are of a fundamen-
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Figure 6.33: Effects of applied amplitude noise on the tunneling oscillations for α =
11.2 and k̄ = 1.04. The rms noise levels are 0% (circles), 7.9% (squares), 15.7% (dia-

monds), and 31% (triangles). The tunneling is completely suppressed at the 31% level,

and thus is more sensitive than in the k̄ = 2.08 case in Fig. 6.32. The data were averaged
over 10 realizations of noise, and were sampled every 2 modulation periods.
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tally different nature, though: while these other experiments study the decoherence of

a superposition state produced by some state-preparation method, the interferences in

the tunneling here are generated dynamically in this nonlinear system. It is also inter-

esting to notice that since the applied noise here leads to a fluctuating force and thus to

diffusion of the atomic momenta, this form of noise mimics a continuous measurement

of the atomic positions [136, 347]. Thus, we might expect that the systemmay be more

sensitive to noise that mimics a measurement of the atomic momentum, which would

cause diffusion of the atomic position, rather than the momentum.

6.5.1 Chebyshev Filter Response

To more completely characterize the noise used in the experiment, we give a descrip-

tion of the filter applied to the noise before it was used to control the optical-lattice

intensity. The low-pass Chebyshev filter is specified in terms of three parameters: the

cutoff frequency ωc, the order N , and the passband ripple parameter ε. The frequency
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Figure 6.34: Plot of the frequency (power) response function |F |2 of the digital Cheby-
shev filter used in the experiment, with order N = 4 and 0.1 dB passband ripple.
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response of this filter is specified by the locations of theN poles in the complex s-plane,

sk = − sinh(v0) cos
(
kπ

2N

)
− i cosh(v0) sin

(
kπ

2N

)
, (6.23)

where

v0 =
sinh−1(1/ε)

N
, (6.24)

for k = (1 − N ), (3 − N ), . . . , (N + 1) [348]. Thus the complex frequency-transfer

function can be written as

F (s) = η
∏
k

1
s− sk

, (6.25)

where s = −iω/ωc, and η is a normalization factor. The (normalized) squared modulus

of the frequency-response function is then [348]

|F (s)|2 = 1
1 + ε2C2

N (ω/ωc)
, (6.26)

where

CN (ω) = cos(N cos−1(ω)) (6.27)

is the N th-order Chebyshev polynomial. Thus, the normalization factor can be written

as η = (
∏
k sk)/

√
1 + ε2 cos2(Nπ/2). The passband ripple is also commonly specified

in terms of another parameter a, which is expressed in terms of ε as

a = 10 log(1 + ε2) , (6.28)

if a is quoted in (positive) dB.

In the experiment, a white noise series (i.e., a series of independent, normally

distributed, random deviates) was generated at the 10MHz sampling rate of the Agilent

33250A waveform synthesizer that controlled the 1D optical lattice intensity. To avoid

unattainably large deviations, the Gaussian distribution of these deviates was truncated

beyond three standard deviations. The waveform was then filtered using the built-in

function in LabView. For the k̄ = 1 (10 µs modulation period) case, the 1 MHz cutoff

frequency resulted in an effective reduction of the rms deviation of the waveform by a
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factor of about 0.4965. To produce equivalent noise levels in the k̄ = 2 (20 µs modu-

lation period) case, where the cutoff frequency was 500 kHz, the noise level was first

multiplied by
√
2, thus compensating for the different ratio of the sampling frequency

to the cutoff frequency.
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Appendix A

Cesium D Line Data

A.1 Overview

In this appendix we review many of the physical and optical properties of cesium that

are relevant to the experiments in this dissertation. In particular, we give parameters

that are useful in treating the mechanical effects of light on cesium atoms. The atomic

parameters for the D1 and D2 optical transitions are given, although only the D2 tran-

sition values are relevant to the work in this dissertation. The measured numbers are

given with their original references, and the calculated numbers are presented with an

overview of their origin along with references tomore comprehensive discussions of their

underlying theory.

A.2 Cesium Physical and Optical Properties

Some useful fundamental physical constants are given in Table A.1. The values given

are the 1998 CODATA recommended values, as listed in [349]. Some of the overall

physical properties of cesium are given in Table A.2. Cesium has 55 electrons, only one
of which is in the outermost shell. 133Cs is the only stable isotope of cesium, and is the

only isotope we consider in this reference. The mass is taken from the high-precision

measurement of [350], and the density, melting point, boiling point, and heat capacities

are taken from [351]. The vapor pressure at 25◦C and the vapor pressure curve in

Fig. A.1 are taken from the vapor pressure model given by [352], which is

log10 Pv = −219.482 00 + 1088.676
T

− 0.083 361 85 T + 94.887 52 log10 T (solid phase)

log10 Pv = 8.221 27−
4006.048
T

− 0.000 601 94 T − 0.196 23 log10 T (liquid phase),

(A.1)
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where Pv is the vapor pressure in torr, and T is the temperature in K. The ionization

limit is the minimum energy required to ionize a cesium atom; this value is taken from

Ref. [353].

The optical properties of the cesium D line are given in Tables A.3 and A.4.

The properties are given separately for each of the two D-line components; the D2 line

(the 62S1/2 −→ 62P3/2 transition) properties are given in Table A.3, and the optical

properties of the D1 line (the 62S1/2 −→ 62P1/2 transition) are given in Table A.4. Of

these two components, the D2 transition is of much more relevance to current quantum

and atom optics experiments, because it has a cycling transition that is used for cooling

and trapping cesium. The frequencies ω0 of the transitions were measured using an

optical frequency comb [354, 355]; the vacuum wavelengths λ and the wave numbers

kL are then determined via the following relations:

λ =
2πc
ω0

kL =
2π
λ
. (A.2)

The air wavelength λair = λ/n assumes index of refraction of n = 1.000 268 21, cor-
responding to dry air at a pressure of 760 torr and a temperature of 22◦C. The index of
refraction is calculated from the Edlén formula [356]:

nair = 1 +
[(
8342.13+

2 406 030
130− κ2 +

15 997
38.9− κ2

)

×
(
0.001 388 23 P
1 + 0.003 671 T

)
− f

(
5.722− 0.0457κ2

)]
× 10−8 .

(A.3)

Here, P is the air pressure in torr, T is the temperature in ◦C, κ is the vacuum wave

number kL/2π in µm−1, and f is the partial pressure of water vapor in the air, in torr.
This formula is appropriate for laboratory conditions and has an estimated uncertainty

of ≤ 10−8. The lifetime is an average of two recent measurements; the first [357]

used a fast beam laser technique, yielding lifetimes of 35.07(10) ns for the 62P1/2 state

and 30.57(7) ns for the 62P3/2 state, while the second [358] used a photon-counting

method, giving lifetimes of 34.75(7) ns (62P1/2) and 30.41(10) ns (62P3/2) state. The

former measurement is taken to supersede several measurements by some of the same

experimenters using the same technique [359, 360], and another measurement of com-

parable quoted uncertainty (29.9(2) ns for the 62P3/2 state) [361] is excluded because

of a substantial disagreement with all recent precision measurements [357]. Another

precise measurement of the ratios of the D1 and D2 transition strengths [362] was not

accounted for in the values quoted here. A general discussion of precision lifetime mea-

surement methods can be found in [363]. Inverting the lifetime gives the decay rate,

which is also the natural (homogenous) line width of the emitted radiation.
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The recoil velocity vr is the change in the cesium atomic velocity when absorb-

ing or emitting a resonant photon, and is given by

vr =
�k

m
. (A.4)

The recoil energy �ωr is defined as the kinetic energy of an atom moving with velocity

v = vr, which is

�ωr =
�
2k2

2m
. (A.5)

The Doppler shift of an incident light field of frequency ωL due to motion of the atom

is

∆ωd =
vatom
c
ωL (A.6)

for small atomic velocities relative to c. For an atomic velocity vatom = vr, the Doppler
shift is simply 2ωr. Finally, if one wishes to create a standing wave that is moving with
respect to the lab frame, the two traveling-wave components must have a frequency

difference determined by the relation

vsw =
∆ωsw
2π

λ

2
, (A.7)

because∆ωsw/2π is the beat frequency of the two waves, and λ/2 is the spatial periodic-
ity of the standing wave. For a standing wave velocity of vr, Eq. (A.7) gives∆ωsw = 4ωr.

A.3 Hyperfine Structure

A.3.1 Energy Level Splittings

The 62S1/2 −→ 62P3/2 and 62S1/2 −→ 62P1/2 transitions are the components of a fine-

structure doublet, and each of these transitions additionally have hyperfine structure.

The fine structure is a result of the coupling between the orbital angular momentum

L of the outer electron and its spin angular momentum S. The total electron angular
momentum is then given by

J = L+ S , (A.8)

and the corresponding quantum number Jmust lie in the range

|L− S| ≤ J ≤ L+ S . (A.9)

(Here we use the convention that the magnitude of J is
√
J(J + 1)�, and the eigen-

value of Jz is mJ�.) For the ground state in cesium, L = 0 and S = 1/2, so J = 1/2;
for the first excited state, L = 1, so J = 1/2 or J = 3/2. The energy of any particular
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level is shifted according to the value of J , so the L = 0 −→ L = 1 (D line) tran-

sition is split into two components, the D1 line (62S1/2 −→ 62P1/2) and the D2 line

(62S1/2 −→ 62P3/2). The meaning of the energy level labels is as follows: the first num-
ber is the principal quantum number of the outer electron, the superscript is 2S + 1,
the letter refers to L (i.e. S ↔ L = 0, P ↔ L = 1, etc.), and the subscript gives the
value of J .

The hyperfine structure is a result of the coupling of J with the total nuclear

angular momentum I. The total atomic angular momentum F is then given by

F = J+ I . (A.10)

As before, the magnitude of F can take the values

|J − I | ≤ F ≤ J + I . (A.11)

For the cesium ground state, J = 1/2 and I = 7/2, so F = 3 or F = 4. For the excited
state of the D2 line (62P3/2), F can take any of the values 2, 3, 4, or 5, and for the D1

excited state (62P1/2), F is either 3 or 4. Again, the atomic energy levels are shifted
according to the value of F .

Because the fine structure splitting in cesium is large enough to be resolved by

many lasers (∼ 42 nm), the two D-line components are generally treated separately. The
hyperfine splittings, however, are much smaller, and it is useful to have some formalism

to describe the energy shifts. The Hamiltonian that describes the hyperfine structure

for each of the D-line components is [364, 365]

Hhfs = AhfsI · J+ Bhfs
3(I · J)2 + 3

2I · J− I(I + 1)J(J + 1)
2I(2I − 1)J(2J − 1) , (A.12)

which leads to a hyperfine energy shift of

∆Ehfs =
1
2
AhfsK +Bhfs

3
2K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1) , (A.13)

where

K = F (F + 1)− I(I + 1)− J(J + 1) , (A.14)

Ahfs is the magnetic dipole constant, and Bhfs is the electric quadrupole constant (al-

though the term with Bhfs applies only to the excited manifold of the D2 transition

and not to the levels with J = 1/2). These constants for the cesium D line are

listed in Table A.5. The value for the ground state Ahfs constant is the recommended

value from Ref. [365]. The constants listed for the 62P3/2 manifold were taken from
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a more recent and precise measurement by Tanner and Wieman [366]. The Ahfs con-

stant for the 62P1/2 manifold is a weighted average of a frequency-comb measurement

(Ahfs = 291.922(20)MHz) [355] and a crossed-beam laser spectroscopy measurement

(Ahfs = 291.89(8)MHz) [367]. The energy shift given by (A.13) is relative to the un-

shifted value (the “center of gravity”) listed in Table A.3. The hyperfine structure of

the D2 line, along with the energy splitting values, is diagrammed in Fig. A.2.

A.3.2 Interaction with Static External Fields

A.3.2.1 Magnetic Fields

Each of the hyperfine (F ) energy levels contains 2F + 1 magnetic sublevels that deter-
mine the angular distribution of the electron wave function. In the absence of external

magnetic fields, these sublevels are degenerate. However, when an external magnetic

field is applied, their degeneracy is broken. The Hamiltonian describing the atomic

interaction with the magnetic field is

HB =
µB
�
(gSS+ gLL+ gII) · B

=
µB
�
(gSSz + gLLz + gIIz)Bz ,

(A.15)

if we take the magnetic field to be along the z-direction (i.e., along the atomic quantiza-

tion axis). In this Hamiltonian, the quantities gS, gL, and gI are respectively the electron

spin, electron orbital, and nuclear “g-factors” that account for various modifications to

the corresponding magnetic dipole moments. The values for these factors are listed in

Table A.6, with the sign convention of [365]. The value for gS has been measured very

precisely, and the value given is the CODATA recommended value. The value for gL is

approximately 1, but to account for the finite nuclear mass, the quoted value is given by

gL = 1−
me

mnuc
, (A.16)

which is correct to lowest order in me/mnuc, where me is the electron mass andmnuc is

the nuclear mass [368]. The nuclear factor gIaccounts for the entire complex structure

of the nucleus, and so the quoted value is an experimental measurement [365].

If the energy shift due to the magnetic field is small compared to the fine-

structure splitting, then J is a good quantum number and the interaction Hamiltonian

can be written as

HB =
µB
�
(gJJz + gIIz)Bz . (A.17)
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Here, the Landé factor gJ is given by [368]

gJ = gL

J(J + 1)− S(S + 1) + L(L+ 1)
2J(J + 1)

+ gS

J(J + 1) + S(S + 1)− L(L+ 1)
2J(J + 1)

� 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
,

(A.18)

where the second, approximate expression comes from taking the approximate values

gS � 2 and gL � 1. The expression here does not include corrections due to the

complicated multielectron structure of cesium [368] and QED effects [369], so the

values of gJ given in Table A.6 are experimental measurements [365].

If the energy shift due to the magnetic field is small compared to the hyperfine

splittings, then similarly F is a good quantum number, so the interaction Hamiltonian

becomes [370]

HB = µB gF Fz Bz , (A.19)

where the hyperfine Landé g-factor is given by

gF = gJ

F (F + 1)− I(I + 1) + J(J + 1)
2F (F + 1)

+ gI

F (F + 1) + I(I + 1)− J(J + 1)
2F (F + 1)

� gJ

F (F + 1)− I(I + 1) + J(J + 1)
2F (F + 1)

.

(A.20)

The second, approximate expression here neglects the nuclear term, which is a correc-

tion at the level of 0.1%, since gI is much smaller than gJ .

For weak magnetic fields, the interaction Hamiltonian HB perturbs the zero-

field eigenstates ofHhfs. To lowest order, the levels split linearly according to [364]

∆E|F mF 〉 = µB gF mF Bz . (A.21)

The approximate gF factors computed from Eq. (A.20) and the corresponding splittings

between adjacent magnetic sublevels are given in Fig. A.2. The splitting in this regime

is called the anomalous Zeeman effect.

For strong fields where the appropriate interaction is described by Eq. (A.17),

the interaction term dominates the hyperfine energies, so that the hyperfine Hamilto-

nian perturbs the strong-field eigenstates |J mJ I mI〉. The energies are then given to
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lowest order by [371]

E|J mJ I mI 〉 = AhfsmJmI

+Bhfs
3(mJmI)2 + 3

2mJmI − I(I + 1)J(J + 1)
2J(2J − 1)I(2I − 1)

+ µB(gJmJ + gImI)Bz .

(A.22)

The energy shift in this regime is called the Paschen-Back effect.

For intermediate fields, the energy shift is more difficult to calculate, and in gen-

eral one must numerically diagonalize Hhfs+HB. A notable exception is the Breit-Rabi
formula [364, 370, 372], which applies to the ground-state manifold of the D transition:

E|J=1/2mJ I mI 〉 = − ∆Ehfs

2(2I + 1)
+gI µBmB±

∆Ehfs

2

(
1 +

4mx
2I + 1

+ x2
)1/2

. (A.23)

In this formula, ∆Ehfs = Ahfs(I + 1/2) is the hyperfine splitting, m = mI ± mJ =
mI ± 1/2 (where the ± sign is taken to be the same as in (A.23)), and

x =
(gJ − gI)µBB

∆Ehfs
. (A.24)

In order to avoid a sign ambiguity in evaluating (A.23), the more direct formula

E|J=1/2mJ I mI 〉 = ∆Ehfs
I

2I + 1
± 1
2
(gJ + 2IgI)µBB (A.25)

can be used for the two states m = ±(I + 1/2). The Breit-Rabi formula is useful in
finding the small-field shift of the “clock transition” between the mF = 0 sublevels of
the two hyperfine ground states, which has no first-order Zeeman shift. Usingm = mF

for small magnetic fields, we obtain

∆ωclock =
(gJ − gI)2µ2B
2�∆Ehfs

B2 (A.26)

to second order in the field strength.

If the magnetic field is sufficiently strong that the hyperfine Hamiltonian is neg-

ligible compared to the interaction Hamiltonian, then the effect is termed the normal

Zeeman effect for hyperfine structure. For even stronger fields, there are Paschen-Back

and normal Zeeman regimes for the fine structure, where states with different J can

mix, and the appropriate form of the interaction energy is Eq. (A.15). Yet stronger fields

induce other behaviors, such as the quadratic Zeeman effect [370], which are beyond

the scope of the present discussion.
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The level structure of cesium in the presence of a magnetic field is shown

in Figs. A.4-A.6 in the weak-field (anomalous Zeeman) regime through the hyperfine

Paschen-Back regime.

A.3.2.2 Electric Fields

An analogous effect, the dc Stark effect, occurs in the presence of a static external elec-

tric field. The interaction Hamiltonian in this case is [373–375]

HE = −1
2
α0E

2
z −

1
2
α2E

2
z

3J2z − J(J + 1)
J(2J − 1) , (A.27)

where we have taken the electric field to be along the z-direction, α0 and α2 are re-

spectively termed the scalar and tensor polarizabilities, and the second (α2) term is

nonvanishing only for the J = 3/2 level. The first term shifts all the sublevels with

a given J together, so that the Stark shift for the J = 1/2 states is trivial. The only
mechanism for breaking the degeneracy of the hyperfine sublevels in (A.27) is the Jz

contribution in the tensor term. This interaction splits the sublevels such that sublevels

with the same value of |mF | remain degenerate. An expression for the hyperfine Stark
shift, assuming a weak enough field that the shift is small compared to the hyperfine

splittings, is [373]

∆E|J I F mF 〉 = −1
2
α0E

2
z

− 1
2
α2E

2
z

[3m2
F − F (F + 1)][3X(X − 1)− 4F (F + 1)J(J + 1)]

(2F + 3)(2F + 2)F (2F − 1)J(2J − 1) ,

(A.28)

where

X = F (F + 1) + J(J + 1)− I(I + 1) . (A.29)

For stronger fields, when the Stark interaction Hamiltonian dominates the hyperfine

splittings, the levels split according to the value of |mJ |, leading to an electric-field

analog to the Paschen-Back effect for magnetic fields.

The static polarizability is also useful in the context of optical traps that are very

far off resonance (i.e., several to many nm away from resonance, where the rotating-wave

approximation is invalid), since the optical potential is given in terms of the ground-

state polarizability as V = −1/2α0E2, where E is the amplitude of the optical field. A

more accurate expression for the far-off resonant potential arises by replacing the static

polarizability with the frequency-dependent polarizability [376]

α0(ω) =
(�ω0)2α0

(�ω0)2 − (�ω)2
, (A.30)
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where ω0 is the resonant frequency of the lowest-energy transition (i.e., the D1 reso-

nance); this approximate expression is valid for light tuned to the red of the D1 line.

The cesium polarizabilities are tabulated in Table A.6. Notice that the dif-

ferences in the excited state and ground state scalar polarizabilities are given, rather

than the excited state polarizabilities, since these are the quantities that were actu-

ally measured experimentally. The polarizabilities given here are in SI units, although

they are often given in cgs units (units of cm3) or atomic units (units of a30, where the

Bohr radius a0 is given in Table A.1). The SI values can be converted to cgs units via

α[cm3] = 5.95531× 10−22α[Hz/(V/cm)2] [376], and subsequently the conversion to
atomic units is straightforward.

The level structure of cesium in the presence of an external dc electric field is

shown in Fig. A.7 in the weak-field regime through the electric hyperfine Paschen-Back

regime.

A.3.3 Reduction of the Dipole Operator

The strength of the interaction between cesium and nearly-resonant optical radiation is

characterized by the dipole matrix elements. Specifically, 〈F mF |er|F ′ m′F 〉 denotes the
matrix element that couples the two hyperfine sublevels |F mF 〉 and |F ′ m′F 〉 (where
the primed variables refer to the excited states and the unprimed variables refer to the

ground states). To calculate these matrix elements, it is useful to factor out the angular

dependence and write the matrix element as a product of a Clebsch-Gordan coefficient

and a reduced matrix element, using the Wigner-Eckart theorem [377]:

〈F mF |erq|F ′ m′F 〉 = 〈F‖er‖F ′〉〈F mF |F ′ 1 m′F q〉 . (A.31)

Here, q is an index labeling the component of r in the spherical basis, and the doubled
bars indicate that the matrix element is reduced. We can also write (A.31) in terms of a

Wigner 3-j symbol as

〈F mF |erq|F ′ m′F 〉 = 〈F‖er‖F ′〉(−1)F ′−1+mF
√
2F + 1

(
F ′ 1 F
m′F q −mF

)
.

(A.32)

Notice that the 3-j symbol (or, equivalently, the Clebsch-Gordan coefficient) vanishes
unless the sublevels satisfymF = m′F + q. This reduced matrix element can be further
simplified by factoring out the F and F ′ dependence into a Wigner 6-j symbol, leaving a
further reduced matrix element that depends only on the L, S, and J quantum numbers
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[377]:

〈F‖er‖F ′〉 ≡ 〈J I F‖er‖J ′ I ′ F ′〉

= 〈J‖er‖J ′〉(−1)F ′+J+1+I
√
(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}
.
(A.33)

Again, this new matrix element can be further factored into another 6-j symbol and a
reduced matrix element involving only the L quantum number:

〈J‖er‖J ′〉 ≡ 〈L S J‖er‖L′ S ′ J ′〉

= 〈L‖er‖L′〉(−1)J ′+L+1+S
√
(2J ′ + 1)(2L+ 1)

{
L L′ 1
J ′ J S

}
.
(A.34)

The numerical value of the 〈J = 1/2‖er‖J ′ = 3/2〉 (D2) and the 〈J = 1/2‖er‖J ′ =
1/2〉 (D1) matrix elements are given in Table A.7. These values were calculated from

the expression [222]
1
τ
=

ω3

3πε0�c3
2J + 1
2J ′ + 1

|〈J‖er‖J ′〉|2 . (A.35)

Note that all the equations we have presented here assume the normalization conven-

tion ∑
M ′

∣∣〈J M |er|J ′ M ′〉
∣∣2 =∑

M ′q

∣∣〈J M |erq|J ′ M ′〉
∣∣2 = ∣∣〈J‖er‖J ′〉∣∣2 . (A.36)

There is, however, another common convention (used in Ref. [363]) that is related to

the convention used here by (J‖er‖J ′) =
√
2J + 1 〈J‖er‖J ′〉.

The dipole matrix elements for specific |F mF 〉 −→ |F ′ m′F 〉 transitions are
listed in Tables A.9-A.20 as multiples of 〈J‖er‖J ′〉. The tables are separated by the
ground-state F number (3 or 4) and the polarization of the transition (where σ+-polar-
ized light couplesmF −→ m′F = mF + 1, π-polarized light couplesmF −→ m′F = mF ,

and σ−-polarized light couplesmF −→ m′F = mF − 1).

A.4 Resonance Fluorescence

A.4.1 Symmetries of the Dipole Operator

Although the hyperfine structure of cesium is quite complicated, it is possible to take

advantage of some symmetries of the dipole operator in order to obtain relatively simple

expressions for the photon scattering rates due to resonance fluorescence. In the spirit

of treating the D1 and D2 lines separately, we will discuss the symmetries in this sec-

tion implicitly assuming that the light is interacting with only one of the fine-structure

components at a time. First, notice that the matrix elements that couple to any single
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excited state sublevel |F ′ m′F 〉 add up to a factor that is independent of the particular
sublevel chosen,∑

q F

|〈F (m′F + q)|erq|F ′ m′F 〉|2 =
2J + 1
2J ′ + 1

|〈J‖er‖J ′〉|2 , (A.37)

as can be verified from the dipole matrix element tables. This factor of (2J+1)/(2J ′+1)
(which is 1 for the D1 line or 1/2 for the D2 line) is the same factor that appears in

Eq. (A.35), and is a consequence of the normalization convention (A.36). The interpre-

tation of this symmetry is simply that all the excited state sublevels decay at the same

rate Γ, and the decaying population “branches” into various ground state sublevels.

An additional symmetry arises from summing the matrix elements from a single

ground-state sublevel to the levels in a particular F ′ energy level:

SFF ′ :=
∑
q

(2F ′ + 1)(2J + 1)
{
J J ′ 1
F ′ F I

}2

|〈F mF |F ′ 1 (mF − q) q〉|2

= (2F ′ + 1)(2J + 1)
{
J J ′ 1
F ′ F I

}2

.

(A.38)

This sum SFF ′ is independent of the particular ground state sublevel chosen, and also

obeys the sum rule ∑
F ′

SFF ′ = 1. (A.39)

The interpretation of this symmetry is that for an isotropic pump field (i.e. a pumping

field with equal components in all three possible polarizations), the coupling to the

atom is independent of how the population is distributed among the sublevels. These

factors SFF ′ (which are listed in Table A.8) provide a measure of the relative strength

of each of the F −→ F ′ transitions. In the case where the incident light is isotropic

and couples two of the F levels, the atom can be treated as a two-level atom, with an

effective dipole moment given by

|diso,eff(F −→ F ′)|2 = 1
3
SFF ′ |〈J||er||J ′〉|2 . (A.40)

The factor of 1/3 in this expression comes from the fact that any given polarization of

the field only interacts with one (of three) components of the dipole moment, so that

it is appropriate to average over the couplings rather than sum over the couplings as in

(A.38).

When the light is detuned far from the atomic resonance (∆ � Γ), the light
interacts with several hyperfine levels. If the detuning is large compared to the excited-

state frequency splittings, then the appropriate dipole strength comes from choosing any
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ground state sublevel |F mF 〉 and summing over its couplings to the excited states. In
the case of π-polarized light, the sum is independent of the particular sublevel chosen:

∑
F ′

(2F ′ + 1)(2J + 1)
{
J J ′ 1
F ′ F I

}2

|〈F mF |F ′ 1 mF 0〉|2 =
1
3
. (A.41)

This sum leads to an effective dipole moment for far detuned radiation given by

|ddet,eff|2 =
1
3
|〈J||er||J ′〉|2 . (A.42)

The interpretation of this factor is also straightforward. Because the radiation is far de-

tuned, it interacts with the full J −→ J ′ transition; however, because the light is linearly

polarized, it interacts with only one component of the dipole operator. Then, because

of spherical symmetry, |d̂|2 ≡ |er̂|2 = e2(|x̂|2 + |ŷ|2 + |ẑ|2) = 3e2|ẑ|2. Note that this
factor of 1/3 also appears for σ± light, but only when the sublevels are uniformly pop-
ulated (which, of course, is not the equilibrium configuration for these polarizations).

The effective dipole moments for this case and the case of isotropic pumping are given

in Table A.7.

A.4.2 Resonance Fluorescence in a Two-Level Atom

In these two cases, where we have an effective dipole moment, the atoms behave like

simple two-level atoms. A two-level atom interacting with a monochromatic field is

described by the optical Bloch equations [222],

ρ̇gg =
iΩ
2
(ρ̃ge − ρ̃eg) + Γρee

ρ̇ee = −iΩ
2
(ρ̃ge − ρ̃eg)− Γρee

˙̃ρge = −(γ + i∆)ρ̃ge −
iΩ
2
(ρee − ρgg) ,

(A.43)

where the ρij are the matrix elements of the density operator ρ := |ψ〉〈ψ|, Ω :=
−d · E0/� is the resonant Rabi frequency, d is the dipole operator, E0 is the electric

field amplitude (E = E0 cosωLt), ∆ := ωL − ω0 is the detuning of the laser field
from the atomic resonance, Γ = 1/τ is the natural decay rate of the excited state,

γ := Γ/2 + γc is the “transverse” decay rate (where γc is a phenomenological decay
rate that models collisions), ρ̃ge := ρge exp(−i∆t) is a “slowly varying coherence,” and
ρ̃ge = ρ̃∗eg. In writing down these equations, we have made the rotating-wave approxima-
tion and used a master-equation approach to model spontaneous emission. Additionally,

we have ignored any effects due to the motion of the atom and decays or couplings to
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other auxiliary states. In the case of purely radiative damping (γ = Γ/2), the excited
state population settles to the steady state solution

ρee(t→ ∞) = (Ω/Γ)2

1 + 4 (∆/Γ)2 + 2 (Ω/Γ)2
. (A.44)

The (steady state) total photon scattering rate (integrated over all directions and fre-

quencies) is then given by Γρee(t→ ∞):

Rsc =
(
Γ
2

)
(I/Isat)

1 + 4 (∆/Γ)2 + (I/Isat)
. (A.45)

In writing down this expression, we have defined the saturation intensity Isat such that

I

Isat
= 2

(
Ω
Γ

)2

, (A.46)

which gives (with I = (1/2)cε0E 2
0 )

Isat =
cε0Γ2�2

4|ε̂ · d|2 , (A.47)

where ε̂ is the unit polarization vector of the light field, and d is the atomic dipole

moment. With Isat defined in this way, the on-resonance scattering cross section σ,

which is proportional to Rsc(∆ = 0)/I , drops to 1/2 of its weakly pumped value σ0
when I = Isat. Additionally, the saturation intensity depends on the polarization of

the pumping light as well as the atomic alignment, although the smallest saturation

intensity (Isat(mF=±4→m′
F=±5), discussed below) is often quoted as a representative

value. Some saturation intensities corresponding to the discussions in Section A.4.1 are

given in Table A.7. A more detailed discussion of the resonance fluorescence from a two-

level atom, including the spectral distribution of the emitted radiation, can be found in

Ref. [222].

A.4.3 Optical Pumping

If none of the special situations in Section A.4.1 applies to the fluorescence problem

of interest, then the effects of optical pumping must be accounted for. A discussion

of the effects of optical pumping in an atomic vapor on the saturation intensity using

a rate-equation approach can be found in Ref. [378]. Here, however, we will carry out

an analysis based on the generalization of the optical Bloch equations (A.43) to the
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degenerate level structure of cesium. The appropriate master equation for the density

matrix of a Fg → Fe hyperfine transition is [224, 379–381]

∂

∂t
ρ̃α mα , β mβ

= − i
2


δαe∑

mg

Ω(mα, mg) ρ̃g mg, β mβ
−

δgβ
∑
me

Ω(me, mβ) ρ̃α mα, eme

+ δαg
∑
me

Ω∗(me, mα) ρ̃eme, β mβ
−

δeβ
∑
mg

Ω∗(mβ, mg) ρ̃α mα, g mg







(pump field)

− δαeδeβ Γ ρ̃α mα , β mβ

− δαeδgβ
Γ
2
ρ̃α mα, β mβ

− δαgδeβ
Γ
2
ρ̃α mα, β mβ

+ δαgδgβ Γ
1∑

q=−1

[
ρ̃e (mα+q), e (mβ+q)

×〈Fe (mα + q)|Fg 1 mα q〉

×〈Fe (mβ + q)|Fg 1 mβ q〉
]




(dissipation)

+ i(δαeδgβ − δαgδeβ) ∆ ρ̃α mα , β mβ

}
(free evolution)

(A.48)

where

Ω(me, mg) = (−1)me−mg 〈Fe me|Fg 1 mg (me −mg)〉 Ω−(me−mg) (A.49)

is the Rabi frequency between two magnetic sublevels,

Ω−q = −
2〈Fe||er||Fg〉E(+)

−q
�

(A.50)

is the overall Rabi frequency with polarization (−q) (E(+)
−q is the field amplitude as-

sociated with the positive-rotating component, with polarization (−q) in the spherical
basis), and δ is the Kronecker delta symbol. This master equation ignores coupling to F

levels other than the ground (g) and excited (e) levels; hence, this equation is appropri-

ate for a cycling transition such as F = 4 −→ F ′ = 5. Additionally, this master equation
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assumes purely radiative damping and, as before, does not describe the motion of the

atom.

To calculate the scattering rate from a Zeeman-degenerate atom, it is necessary

to solve the master equation for the steady-state populations. Then, the total scattering

rate is given by

Rsc = ΓPe = Γ
∑
me

ρeme, eme , (A.51)

where Pe is the total population in the excited state. In addition, by including the

branching ratios of the spontaneous decay, it is possible to account for the polarization

of the emitted radiation. Defining the scattering rate Rsc, −q for the polarization (−q),
we have

Rsc, −q =
∑
me mg

|〈Fe me|Fg 1 mg q〉|2ρeme, e me , (A.52)

where, as before, the only nonzero Clebsch-Gordan coefficients occur forme = mg + q.
As we have defined it here, q = ±1 corresponds to σ±-polarized radiation, and q = 0
corresponds to π-polarized radiation. The angular distribution for the σ± scattered light

is simply the classical radiation pattern for a rotating dipole,

f ±sc (θ, φ) =
3
16π

(1 + cos2 θ) , (A.53)

and the angular distribution for the π-scattered light is the classical radiation pattern for

an oscillating dipole,

f 0
sc(θ, φ) =

3
8π
sin2 θ . (A.54)

The net angular pattern will result from the interference of these three distributions.

In general, this master equation is difficult to treat analytically, and even a nu-

merical solution of the time-dependent equations can be time-consuming if a large num-

ber of degenerate states are involved. In the following discussions, we will only consider

some simple light configurations interacting with the F = 4 −→ F ′ = 5 cycling transi-
tion that can be treated analytically. Discussions of Zeeman-degenerate atoms and their

spectra can be found in Refs. [381–385].

A.4.3.1 Circularly (σ±) Polarized Light

The cases where the atom is driven by either σ+ or σ− light (i.e. circularly polarized

light with the atomic quantization axis aligned with the light propagation direction)

are straightforward to analyze. In these cases, the light transfers its angular momen-

tum to the atom, and thus the atomic population is transferred to the state with the
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largest corresponding angular momentum. In the case of the F = 4 −→ F ′ = 5
cycling transition, a σ+ driving field will transfer all the atomic population into the

|F = 4, mF = 4〉 −→ |F ′ = 5, m′F = 5〉 cycling transition, and a σ− driving field will
transfer all the population into the |F = 4, mF = −4〉 −→ |F ′ = 5, m′F = −5〉 cycling
transition. In both cases, the dipole moment d(mF=±4→mF =±5) is given in Table A.7.

Note that these dipole moments are only valid in steady state. If the pumping field

is weak, the “settling time” of the atom to its steady state can be long, resulting in a

time-dependent effective dipole moment (and saturation intensity). For example, be-

ginning with a uniform sublevel population in the F = 4 ground level, the saturation
intensity will begin at 2.70mW/cm2 and equilibrate at 1.10mW/cm2 for a circularly po-

larized pump. Also, if there are any “remixing” effects such as collisions or magnetic

fields not aligned with the axis of quantization, the system may equilibrate to some

other configuration.

A.4.3.2 Linearly (π) Polarized Light

If the light is π-polarized (linearly polarized along the quantization axis), the equilib-

rium population distribution is more complicated. In this case, the atoms tend to accu-

mulate in the sublevels near m = 0. Gao [381] has derived analytic expressions for the
equilibrium populations of each sublevel and showed that the equilibrium excited-state

population is given by Eq. (A.44) if Ω2 is replaced by

gS(2Fe + 1)|Ω0|2 , (A.55)

where Ω0 is the only nonzero component of the Rabi-frequency vector and gS is a (con-

stant) geometric factor that accounts for the optical pumping. For the cesium F =
4 −→ F ′ = 5 cycling transition, this factor has the value gS = 4420/92377 ≈ 0.04785,
leading to a steady-state saturation intensity of Isat = 2.09mW/cm2.

A.4.3.3 One-Dimensional σ+ − σ− Optical Molasses

We now consider the important case of an optical molasses in one dimension formed

by one σ+ and one σ− field (e.g., by two right-circularly polarized, counterpropagating

laser fields). These fields interfere to form a field that is linearly polarized, where the

polarization vector traces out a helix in space. Because the light is linearly polarized

everywhere, and the steady-state populations are independent of the polarization direc-

tion (in the plane orthogonal to the axis of quantization), the analysis of the previous

section applies. When we apply the formula (A.45) to calculate the scattering rate, then,

we simply use the saturation intensity calculated in the previous section, and use the

total intensity (twice the single-beam intensity) for I in the formula.
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A.4.3.4 Three-Dimensional Optical Molasses

Finally, we consider an optical molasses in three dimensions, composed of six circularly

polarized beams. This optical configuration is found in the commonly used six-beam

magneto-optic trap (MOT). However, as we shall see, this optical configuration is quite

complicated, and we will only be able to estimate the total rate of fluorescence.

First, we will derive an expression for the electric field and intensity of the light.

A typical MOT is formed with two counterpropagating, right-circularly polarized beams

along the z-axis and two pairs of counterpropagating, left-circularly polarized beams

along the x- and y-axes. Thus, the net electric field is given by

E(r, t) =
E0

2
e−iωt

[
eikz

(
x̂− iŷ√

2

)
+ e−ikz

(
x̂+ iŷ√

2

)

+ eikx
(
ŷ + iẑ√

2

)
+ e−ikx

(
ŷ − iẑ√

2

)

+ eiky
(
ẑ + ix̂√

2

)
+ e−iky

(
ẑ − ix̂√

2

)]
+ c.c.

=
√
2E0e

−iωt
[
(coskz − sin ky)x̂+ (sinkz + coskx)ŷ + (cosky − sinkx)ẑ

]
.

(A.56)

Hence, the polarization is linear everywhere, but the orientation of the polarization

vector is strongly position-dependent. The corresponding intensity is given by

I(r) = I0
[
6− 4(coskz sinky + cosky sinkx− sinkz cos kx)

]
, (A.57)

where I0 := (1/2)cε0E 2
0 is the intensity of a single beam. The six beams form an

intensity lattice in space, with an average intensity of 6I0 and a discrete set of points
with zero intensity. Note, however, that the form of this interference pattern is specific

to the set of phases chosen here, since there are more than the minimal number of

beams needed to determine the lattice pattern.

It is clear that this situation is quite complicated, because an atom moving in

this molasses will experience both a changing intensity and polarization direction. The

situation becomes even more complicated when the magnetic field gradient from the

MOT is taken into account. However, we can estimate the scattering rate if we ignore

the magnetic field and assume that the atoms do not remain localized in the lattice,

so that they are, on the average, illuminated by all polarizations with intensity 6I0. In
this case, the scattering rate is given by the two-level atom expression (A.45), with the

saturation intensity corresponding to an isotropic pump field (Isat = 2.70 mW/cm
2
for
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the F = 4 −→ F ′ = 5 cycling transition, ignoring the scattering from any light tuned to

the F = 3 −→ F ′ = 4 repump transition). Of course, this is almost certainly an overes-
timate of the effective saturation intensity, since sub-Doppler cooling mechanisms will

lead to optical pumping and localization in the light maxima [251]. These effects can

be minimized, for example, by using a very large intensity to operate in the saturated

limit, where the scattering rate approaches Γ/2.

This estimate of the scattering rate is quite useful since it can be used to cal-

culate the number of atoms in an optical molasses from a measurement of the optical

scattering rate. For example, if the atoms are imaged by a CCD camera, then the number

of atoms Natoms is given by

Natoms =
8π
[
1 + 4(∆/Γ)2 + (6I0/Isat)

]
Γ(6I0/Isat)texpηcountdΩ

Ncounts , (A.58)

where I0 is the intensity of one of the six beams, Ncounts is the integrated number of

counts recorded on the CCD chip, texp is the CCD exposure time, ηcount is the CCD

camera efficiency (in counts/photon), and dΩ is the solid angle of the light collected by

the camera. An expression for the solid angle is

dΩ =
π

4

(
f

(f/#)d0

)2

, (A.59)

where f is the focal length of the imaging lens, d0 is the object distance (from the MOT

to the lens aperture), and f/# is the f -number of the imaging system.
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A.5 Data Tables

Table A.1: Fundamental Physical Constants (1998 CODATA recommended values

[349])

Speed of Light c 2.997 924 58 × 108 m/s (exact)

Permeability of Vacuum µ0 4π × 10−7N/A2 (exact)

Permittivity of Vacuum ε0
(µ0c

2)−1 (exact)

= 8.854 187 817 . . .× 10−12 F/m

Planck’s Constant

h
6.626 068 76(52) × 10−34 J·s

4.135 667 27(16) × 10−15 eV·s

�
1.054 571 596(82) × 10−34 J·s
6.582 118 89(26) × 10−16 eV·s

Elementary Charge e 1.602 176 462(63) × 10−19 C

Bohr Magneton µB
9.274 008 99(37) × 10−24 J/T

h · 1.399 624 624(56) MHz/G

Atomic Mass Unit u 1.660 538 73(13) × 10−27 kg

Electron Mass me
5.485 799 110(12) × 10−4 u

9.109 381 88(72) × 10−31 kg

Bohr Radius a0 0.529 177 208 3(19) × 10−10 m

Boltzmann’s Constant kB 1.380 650 3(24) × 10−23 J/K

Table A.2: Cesium Physical Properties.

Atomic Number Z 55

Total Nucleons Z +N 133

Atomic Mass m
132.905 451 931(27) u

2.206 946 50(17) × 10−25 kg
[350]

Density at 25◦C ρm 1.93 g/cm3 [351]

Melting Point TM 28.44 ◦C [351]

Boiling Point TB 671 ◦C [351]

Specific Heat Capacity cp 0.242 J/g·K [351]

Molar Heat Capacity Cp 32.210 J/mol·K [351]

Vapor Pressure at 25◦C Pv 1.3 × 10−6 torr [352]

Nuclear Spin I 7/2

Ionization Limit EI
31 406.467 66(15) cm−1

3.893 905(15) eV
[353]
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Table A.3: Cesium D2 (62S1/2 −→ 62P3/2) Transition Optical Properties.
Frequency ω0 2π · 351.725 718 50(11) THz [354]

Wavelength (Vacuum) λ 852.347 275 82(27) nm

Wavelength (Air) λair 852.118 73 nm

Wave Number (Vacuum) kL/2π 11 732.307 104 9(37) cm−1

Lifetime τ 30.517(57) ns [357, 358]

Decay Rate/
Natural Line Width (FWHM)

Γ
32.768(62) × 106 s−1

2π · 5.2152(98) MHz

Recoil Velocity vr 3.5225 mm/s

Recoil Energy ωr 2π · 2.0663 kHz
Doppler shift (vatom = vr) ∆ωd(vatom = vr) 2π · 4.1327 kHz

Frequency shift for standing wave
moving with vsw = vr

∆ωsw(vsw = vr) 2π · 8.2653 kHz

Table A.4: Cesium D1 (62S1/2 −→ 62P1/2) Transition Optical Properties.
Frequency ω0 2π · 335.116 048 807(41) THz [355]

Wavelength (Vacuum) λ 894.592 959 86(11) nm

Wavelength (Air) λair 894.353 09 nm

Wave Number (Vacuum) kL/2π 11 178.268 160 7(14) cm−1

Lifetime τ 34.855(57) ns [357, 358]

Decay Rate/
Natural Line Width (FWHM)

Γ
28.690(47) × 106 s−1

2π · 4.5662(75) MHz

Recoil Velocity vr 3.3561 mm/s

Recoil Energy ωr 2π · 1.8758 kHz
Doppler shift (vatom = vr) ∆ωd(vatom = vr) 2π · 3.7516 kHz
Frequency shift for standing wave

moving with vsw = vr
∆ωsw(vsw = vr) 2π · 7.5031 kHz

Table A.5: Cesium D Transition Hyperfine Structure Constants.

Magnetic Dipole Constant, 62S1/2 A62S1/2
h · 2.298 157 942 5 GHz (exact) [365]

Magnetic Dipole Constant, 62P1/2 A62P1/2
h · 291.920(19) MHz [355, 367]

Magnetic Dipole Constant, 62P3/2 A62P3/2
h · 50.275(3) MHz [366]

Electric Quadrupole Constant, 62P3/2 B62P3/2
h · −0.53(2) MHz [366]
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Table A.6: Cesium D Transition Magnetic and Electric Field Interaction Parameters.

Electron spin g-factor gS 2.002 319 304 373 7(80) [349]

Electron orbital g-factor gL 0.999 995 87

Fine structure Landé g-factor

gJ (6
2S1/2) 2.002 540 32(20) [365]

gJ (6
2P1/2) 0.665 90(9) [365]

gJ (6
2P3/2) 1.3340(3) [365]

Nuclear g-factor gI −0.000 398 853 95(52) [365]

Clock transition Zeeman shift ∆ωclock/B
2 2π · 427.45 Hz/G2

Ground-state polarizability α0(6
2S1/2) h · 0.1001(20) Hz/(V/cm)2 [376]

D1 scalar polarizability α0(6
2P1/2) − α0(6

2S1/2) h · 0.2415(24) Hz/(V/cm)2 [386]

D2 scalar polarizability α0(6
2P3/2) − α0(6

2S1/2) h · 0.308 60(60) Hz/(V/cm)2 [387]

D2 tensor polarizability α2(6
2P3/2) h · −0.065 29(37) Hz/(V/cm)2 [387]

Table A.7: Cesium Dipole Matrix Elements and Saturation Intensities.

D2(6
2S1/2 −→ 62P3/2) Transition Dipole

Matrix Element
〈J = 1/2‖er‖J ′ = 3/2〉

4.4754(59) ea0

3.7944(50) × 10−29 C·m

Effective Dipole Moment and Saturation

Intensity (F = 4 → F ′ = 5)
(isotropic light polarization)

diso,eff (F = 4 → F ′ = 5)
2.0199(27) ea0

1.7126(23) × 10−29 C·m
Isat(iso,eff)(F = 4 → F ′ = 5) 2.7020(36) mW/cm2

Effective Far-Detuned Dipole Moment and

Saturation Intensity

(D2 line, π-polarized light)

ddet,eff,D2

2.5839(34) ea0

2.1907(29) × 10−29 C·m
Isat(det,eff,D2) 1.6512(22) mW/cm2

Dipole Moment and Saturation Intensity,

|F = 4, mF = ±4〉 → |F ′ = 5,m′
F = ±5〉

cycling transition (σ±-polarized light)

d(mF=±4→ m′
F
=±5)

3.1646(42) ea0

2.6831(36) × 10−29 C·m
Isat(mF=±4→ m′

F
=±5) 1.1008(15) mW/cm2

D1(6
2S1/2 −→ 62P1/2) Transition Dipole

Matrix Element
〈J = 1/2‖er‖J ′ = 1/2〉

3.1840(37) ea0

2.6995(31) × 10−29 C·m

Effective Far-Detuned Dipole Moment and

Saturation Intensity

(D1 line, π-polarized light)

ddet,eff,D1

1.8383(21) ea0

1.5586(18) × 10−29 C·m
Isat(det,eff,D1) 2.5008(29) mW/cm2

Table A.8: Cesium Relative Hyperfine Transition Strength Factors SFF ′ .

D2 (62S1/2 −→ 62P3/2) transition

S45 11/18 S34 15/56

S44 7/24 S33 3/8

S43 7/72 S32 5/14

D1 (62S1/2 −→ 62P1/2) transition
S44 5/12 S34 3/4

S43 7/12 S33 1/4
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Table A.9: Cesium D2 (62S1/2 −→ 62P3/2) Dipole Matrix Elements for σ+ transitions

(F = 4, mF −→ F ′,m′F = mF +1), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.
mF = −4 −3 −2 −1 0 1 2 3 4

F ′ = 5
q

1
90

q
1
30

q
1
15

q
1
9

q
1
6

q
7
30

q
14
45

q
2
5

q
1
2

F ′ = 4
q

7
120

q
49
480

q
21
160

q
7
48

q
7
48

q
21
160

q
49
480

q
7
120

F ′ = 3
q

7
72

q
7
96

q
5
96

q
5
144

q
1
48

q
1
96

q
1
288

Table A.10: Cesium D2 (62S1/2 −→ 62P3/2) Dipole Matrix Elements for π transitions

(F = 4, mF −→ F ′,m′F = mF ), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.
mF = −4 −3 −2 −1 0 1 2 3 4

F ′ = 5 −
q

1
10

−
q

8
45

−
q

7
30

−
q

4
15

−
q

5
18

−
q

4
15

−
q

7
30

−
q

8
45

−
q

1
10

F ′ = 4 −
q

7
30

−
q

21
160

−
q

7
120

−
q

7
480

0
q

7
480

q
7
120

q
21
160

q
7
30

F ′ = 3
q

7
288

q
1
24

q
5
96

q
1
18

q
5
96

q
1
24

q
7
288

Table A.11: Cesium D2 (62S1/2 −→ 62P3/2)Dipole Matrix Elements for σ− transitions
(F = 4, mF −→ F ′,m′F = mF − 1), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.
mF = −4 −3 −2 −1 0 1 2 3 4

F ′ = 5
q
1
2

q
2
5

q
14
45

q
7
30

q
1
6

q
1
9

q
1
15

q
1
30

q
1
90

F ′ = 4 −
q

7
120

−
q

49
480

−
q

21
160

−
q

7
48

−
q

7
48

−
q

21
160

−
q

49
480

−
q

7
120

F ′ = 3
q

1
288

q
1
96

q
1
48

q
5
144

q
5
96

q
7
96

q
7
72
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Table A.12: Cesium D2 (62S1/2 −→ 62P3/2)Dipole Matrix Elements for σ+ transitions

(F = 3, mF −→ F ′,m′F = mF +1), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.
mF = −3 −2 −1 0 1 2 3

F ′ = 4
q

5
672

q
5
224

q
5
112

q
25
336

q
25
224

q
5
32

q
5
24

F ′ = 3
q

3
32

q
5
32

q
3
16

q
3
16

q
5
32

q
3
32

F ′ = 2
q

5
14

q
5
21

q
1
7

q
1
14

q
1
42

Table A.13: Cesium D2 (62S1/2 −→ 62P3/2) Dipole Matrix Elements for π transitions

(F = 3, mF −→ F ′,m′F = mF ), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.
mF = −3 −2 −1 0 1 2 3

F ′ = 4 −
q

5
96

−
q

5
56

−
q

25
224

−
q

5
42

−
q

25
224

−
q

5
56

−
q

5
96

F ′ = 3 −
q

9
32

−
q
1
8

−
q

1
32

0
q

1
32

q
1
8

q
9
32

F ′ = 2
q

5
42

q
4
21

q
3
14

q
4
21

q
5
42

Table A.14: Cesium D2 (62S1/2 −→ 62P3/2)Dipole Matrix Elements for σ− transitions
(F = 3, mF −→ F ′,m′F = mF − 1), expressed as multiples of 〈J = 1/2||er||J ′ = 3/2〉.

mF = −3 −2 −1 0 1 2 3

F ′ = 4
q

5
24

q
5
32

q
25
224

q
25
336

q
5
112

q
5
224

q
5
672

F ′ = 3 −
q

3
32

−
q

5
32

−
q

3
16

−
q

3
16

−
q

5
32

−
q

3
32

F ′ = 2
q

1
42

q
1
14

q
1
7

q
5
21

q
5
14
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Table A.15: Cesium D1 (62S1/2 −→ 62P1/2)Dipole Matrix Elements for σ+ transitions

(F = 4, mF −→ F ′,m′F = mF +1), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.
mF = -4 −3 −2 −1 0 1 2 3 4

F ′ = 4
q

1
12

q
7
48

q
3
16

q
5
24

q
5
24

q
3
16

q
7
48

q
1
12

F ′ = 3
q

7
12

q
7
16

q
5
16

q
5
24

q
1
8

q
1
16

q
1
48

Table A.16: Cesium D1 (62S1/2 −→ 62P1/2) Dipole Matrix Elements for π transitions
(F = 4, mF −→ F ′,m′F = mF ), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.
mF = -4 −3 −2 −1 0 1 2 3 4

F ′ = 4 −
q
1
3

−
q

3
16

−
q

1
12

−
q

1
48

0
q

1
48

q
1
12

q
3
16

q
1
3

F ′ = 3
q

7
48

q
1
4

q
5
16

q
1
3

q
5
16

q
1
4

q
7
48

Table A.17: Cesium D1 (62S1/2 −→ 62P1/2)Dipole Matrix Elements for σ− transitions
(F = 4, mF −→ F ′,m′F = mF − 1), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.
mF = -4 −3 −2 −1 0 1 2 3 4

F ′ = 4 −
q

1
12

−
q

7
48

−
q

3
16

−
q

5
24

−
q

5
24

−
q

3
16

−
q

7
48

−
q

1
12

F ′ = 3
q

1
48

q
1
16

q
1
8

q
5
24

q
5
16

q
7
16

q
7
12
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Table A.18: Cesium D1 (62S1/2 −→ 62P1/2)Dipole Matrix Elements for σ+ transitions

(F = 3, mF −→ F ′,m′F = mF +1), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.
mF = −3 −2 −1 0 1 2 3

F ′ = 4 −
q

1
48

−
q

1
16

−
q
1
8

−
q

5
24

−
q

5
16

−
q

7
16

−
q

7
12

F ′ = 3 −
q

1
16

−
q

5
48

−
q
1
8

−
q
1
8

−
q

5
48

−
q

1
16

Table A.19: Cesium D1 (62S1/2 −→ 62P1/2) Dipole Matrix Elements for π transitions

(F = 3, mF −→ F ′,m′F = mF ), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.
mF = −3 −2 −1 0 1 2 3

F ′ = 4
q

7
48

q
1
4

q
5
16

q
1
3

q
5
16

q
1
4

q
7
48

F ′ = 3
q

3
16

q
1
12

q
1
48

0 −
q

1
48

−
q

1
12

−
q

3
16

Table A.20: Cesium D1 (62S1/2 −→ 62P1/2)Dipole Matrix Elements for σ− transitions
(F = 3, mF −→ F ′,m′F = mF − 1), expressed as multiples of 〈J = 1/2||er||J ′ = 1/2〉.

mF = −3 −2 −1 0 1 2 3

F ′ = 4 −
q

7
12

−
q

7
16

−
q

5
16

−
q

5
24

−
q
1
8

−
q

1
16

−
q

1
48

F ′ = 3
q

1
16

q
5
48

q
1
8

q
1
8

q
5
48

q
1
16
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Figure A.1: Vapor pressure of cesium from the model of Eqs. (A.1). The vertical line

indicates the melting point.
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Figure A.2: CesiumD2 transition hyperfine structure, with frequency splittings between

the hyperfine energy levels. The excited-state values are taken from [366], and the

ground-state values are exact, as a result of the current definition of the second. The

approximate Landé gF -factors for each level are also given, with the corresponding Zee-

man splittings between adjacent magnetic sublevels.
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Figure A.3: CesiumD1 transition hyperfine structure, with frequency splittings between

the hyperfine energy levels. The excited-state values are taken from [355, 367], and

the ground-state values are exact, as a result of the current definition of the second.

The approximate Landé gF -factors for each level are also given, with the corresponding

Zeeman splittings between adjacent magnetic sublevels.



286

-20

-10

0

10

20

0 5000 10000 15000

E
/h

B

(G
H
z)

(G)

F = 4

F = 3

m  = -1/2

m  = +1/2J

J

Figure A.4: Cesium 62S1/2 (ground) level hyperfine structure in an external magnetic
field. The levels are grouped according to the value of F in the low-field (anomalous

Zeeman) regime and mJ in the strong-field (hyperfine Paschen-Back) regime.
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Figure A.5: Cesium 62P1/2 (D1 excited) level hyperfine structure in an external mag-

netic field. The levels are grouped according to the value of F in the low-field (anoma-

lous Zeeman) regime andmJ in the strong-field (hyperfine Paschen-Back) regime.
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Figure A.6: Cesium 62P3/2 (D2 excited) level hyperfine structure in an external mag-
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lous Zeeman) regime andmJ in the strong-field (hyperfine Paschen-Back) regime.
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Figure A.7: Cesium 62P3/2 (D2 excited) level hyperfine structure in a constant, external

electric field. The levels are grouped according to the value ofF in the low-field (anoma-

lous Zeeman) regime and |mJ | in the strong-field (“electric” hyperfine Paschen-Back)
regime. Levels with the same values of F and |mF | (for a weak field) are degenerate.



Appendix B

Phase Space Gallery I: Standard Map

In this appendix we take a stroll through the phase space of the standard map as it

becomes increasingly chaotic. As we have seen in Chapter 4, the standard map is actually

a one-parameter family of maps, given by

pn+1 = pn +K sinxn
xn+1 = xn + pn+1 .

(B.1)

The stochasticity parameter K controls the “degree of chaos” of the dynamics.

For K = 0, the momentum is a constant of the motion, so the phase space is

simply the set of contours of constant p. For small K, the map is weakly perturbed.

Most of the tori are distorted but still present, with only very small chaotic regions (as

expected from the KAM theorem), and several resonances become visible (as expected

from the Poincaré–Birkhoff theorem). The phase space structure becomes especially

rich when K is near Greene’s number (≈ 0.971635) [253], which is the critical value at
which the last KAM surface (i.e., invariant torus that spans the phase space, partition-

ing the chaotic regions into disconnected cells) is destroyed, and the chaotic transport

makes a phase transition from local to global diffusion. Beyond this value, much of the

stable structure breaks down, leaving mostly the primary resonances, until they become

unstable at K = 4. The phase space then becomes mostly chaotic, with some islands
popping back up now and then (such as the accelerator modes near K = 2π and 4π).

In the graphics that follow, the iterates of the standard map are plotted for vari-

ous stochasticity parameters. The phase plots here show about 40 different trajectories,
with around 8000 iterations per trajectory. To retain the symmetry of the phase space,
the symmetric image (2π − x, 2π− p) of each (x, p) point is also plotted. The colors in
the diagrams mark different trajectories, serving the dual purposes of heightening the

contrast between phase-space structures and making it clear when mixing behavior is

present. Because of the 2π-periodicity of the phase space in both x and p, only one unit
cell of the phase space is shown.
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The phase-space plots in this and the next gallery were hand-coded directly in

the POSTSCRIPT graphics language, which is a powerful and efficient tool for producing

complex graphics. These rather small graphics files can then be printed on standard

laser printers, and the printer’s processor performs the iteration mapping or numerical

integration to determine the locations of the points. To save space in the PDF-formatted

version of this document (and for more consistent color and intensity), these phase

spaces were rasterized prior to inclusion in this LATEX document. An earlier example

of using POSTSCRIPT for plotting the phase space of an iterated map can be found in

[388].
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Appendix C

Phase Space Gallery II: Amplitude-Modulated Pendulum

Now we examine the phase space for the other system that we study in this dissertation,

the amplitude-modulated pendulum. This system is described by the Hamiltonian

H(x, p, t) =
p2

2
− 2α cos2(πt) cos(x) , (C.1)

which is just the pendulum Hamiltonian with a single-frequency modulation of the well

depth. As the time dependence here can be decomposed into three frequencies, the

phase-space is dominated by the three corresponding primary resonances, located at

p = 0 and p = ±2π. These three resonances form as α increases from zero, and they

dissolve into the surrounding chaotic sea as α continues to grow. Especially dramatic is

the “molting” behavior of the islands, where they grow an island chain and then shed

it into the chaotic sea; this can be seen, for example, for a period-4 chain in the center

island around α = 3.2, and a period-4 island chain in the outer islands around α = 5.2.
Also interesting is that the remnants of the center island disappear around α = 11, but
the island makes a strong reappearance around α = 18.

In the following graphics, the trajectory coordinates are plotted, sampled at unit

times t = n (for integer n). The phase plots here show about 60 different trajectories,
with around 4000 iterations per trajectory. To retain the symmetry of the phase space,
the three symmetric images (x, −p), (−x, p), and (−x, −p) of each (x, p) point is also
plotted.

The phase-space plots in this gallery were again hand-coded directly in POST-

SCRIPT, where the code contained two embedded integrators, a fixed-step, second-

order Stoermer routine and a fourth-order Runge-Kutta routine. Despite the lower order

of the Stoermer method, it was much more accurate for the same step size than the

Runge-Kutta integrator. These graphics files were again rasterized before inclusion in

the PDF-formatted version of this document, as they require extensive processing time

compared to the standard-map phase plots.
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[66] Rüdiger Schack, “Comment on ‘Exponential Sensitivity and Chaos in Quantum

Systems,’ ” Phys. Rev. Lett. 75, 581 (1995). A comment on [65].

[67] D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London, 1993).

[68] O. F. de Alcantara Bonfim, J. Florencio, and F. C. Sá Barreto, “Chaotic dynamics
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