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6.1 Overview

We will now discuss experimental results on quantum dynamics in the case where the corre-

sponding classical description is characterized by a mixed phase space, in which chaotic and

stable regions coexist. This regime is distinctly different from the strongly chaotic regime of

Chapter 4, and the study of this new regime is enabled by the state-preparation methods out-

lined in the previous chapter. The experiments study the atomic motion in a standing wave of

light that is modulated sinusoidally in time. In particular, we will focus on tunneling between

two islands of stability in the classical phase space of this system. Because the classical transport

between the islands is forbidden by the system dynamics and not by a potential barrier, this tun-

neling is known as dynamical tunneling. We will investigate the salient details of the tunneling,

including how the tunneling depends on the phase-space location of the initial condition and

the role of symmetry in supporting the tunneling. More significantly, though, we will discuss

how the presence of chaos in phase space can enhance the tunneling rate, and we will examine

evidence for such chaos-assisted tunneling in the experimental results. This evidence includes

a comparison to a dynamical tunneling process (Bragg scattering) that occurs in the integrable

counterpart to the modulated system; a fast, secondary oscillation in the tunneling dynamics;

and the dependence of the tunneling rate on the lattice intensity. Finally, we will see how noise

destroys the quantum tunneling effect and restores classical-like behavior, and how the system

is more sensitive to noise as the parameters move the dynamics closer to the classical limit.

A subset of the data presented here, including the observation of tunneling oscillations,

the effects of location in phase-space and broken symmetry, a comparison to Bragg scattering,

and the influence of a third (chaotic) state has been previously published in [Steck01].

6.2 Barrier Tunneling

Before tackling the issue of tunneling in phase space, we will begin with the familiar problem of

tunneling in a symmetric double-well potential, of which one example is shown in Fig. 6.1. In

the limit where the barrier separating the wells is arbitrarily high, the system can be regarded as

two isolated, identical potential wells, and thus the level structure of the combined system is a
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set of degenerate doublets. For a potential barrier of finite height, the doublet states are coupled

because a state localized in one well “leaks” through the barrier and into the other well. In the

weak-coupling regime, we can neglect the coupling of a particular doublet to other doublets, and

thus the Hamiltonian for a doublet can be written as

H =
(

E0 −℘/2
−℘/2 E0

)
(6.1)

in the uncoupled basis {|L〉, |R〉} (localized in the left and right well, respectively), where ℘/2

represents the coupling energy between the two states. The coupling matrix elements in this

case are negative because the perturbation is a reduction of the potential from an arbitrarily

large height. The eigenvalues of this Hamiltonian are E0 ± ℘/2, and the eigenvectors are the

symmetric and antisymmetric combinations (|L〉 ± |R〉)/
√

2 of the uncoupled states. The anti-

symmetric state has the larger energy for positive ℘, which is consistent with the small-barrier

limit of a single well. The lowest energy doublet for the quartic double well is shown in Fig. 6.1.

The doublet of a symmetric and an antisymmetric state can then fully describe the

tunneling behavior. If we begin the evolution with a state localized in the left-hand well, it
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Figure 6.1: The ground-state tunneling doublet of the quartic double well potential,H = p2/2+
x4−4x2 (with � = 1). The symmetric-state energy is−2.20, and the antisymmetric-state energy

is −2.10.
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can be written approximately as the superposition (|+〉 + |−〉)/
√

2, where |+〉 and |−〉 are the

symmetric and antisymmetric doublet states, respectively. The time-dependent solution is

|ψ(t)〉 =
1√
2

(
|+〉ei℘t/2� + |−〉e−i℘t/2�

)
= cos

(
℘t

2�

)
|L〉 + i sin

(
℘t

2�

)
|R〉 ,

(6.2)

up to an overall phase. Thus, as the two states dephase, the wave packet oscillates between

the two wells with an angular frequency of ℘/�. In the WKB (semiclassical) approximation, the

tunnel splitting ℘ can be written [Landau77; Tomsovic94; Brack97]

℘ =
�ω0

π
exp

(
−1

�

∫ x2

x1

√
2m(V (x) − E0) dx

)
, (6.3)

where x1 and x2 are the two inner classical turning points at energy E0, and ω0 is the classical

angular oscillation frequency in one of the uncoupled wells. This A exp(−S/�) scaling of the

tunneling rate with �, where A is a smooth function of � and S is the imaginary part of the

classical action along a (complex) path connecting the two tunneling regions, is characteristic of

tunneling where only two states are involved [Tomsovic94; Creagh98].

It is important to note that the tunneling here is facilitated by the reflection symmetry

of the system. In a double well with small asymmetry (i.e., the energy difference between the

wells is small compared to the uncoupled energy splittings), we can simply change the model

Hamiltonian (6.1) to reflect an energy displacement of one well:

H =
(
E0 + ∆ −℘/2
−℘/2 E0

)
. (6.4)

In this model, ∆ controls the asymmetry of the system. Comparing this Hamiltonian to the

Hamiltonian (2.25) for a driven two-level atom in the rotating-wave approximation, we see that

these two systems are formally equivalent. Thus the eigenvalues are

E± = E0 +
1
2

(
∆ ∓

√
∆2 + ℘2

)
, (6.5)

and the corresponding eigenvectors are

|+〉 = sin θ|L〉 + cos θ|R〉
|−〉 = cos θ|L〉 − sin θ|R〉 , (6.6)
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where

sin θ =

√√√√1
2

(
1 − ∆√

∆2 + ℘2

)

cos θ =

√√√√1
2

(
1 +

∆√
∆2 + ℘2

)
,

(6.7)

or more compactly,

tan(2θ) = − ℘

∆

(
0 ≤ θ <

π

2

)
. (6.8)

As in the two-level atom, the |+〉 and |−〉 states are the “dressed” states of the system, and the

tunneling oscillations can be regarded as Rabi oscillations between the two wells. The asymme-

try in the double well then corresponds to driving a two-level atom off resonance, and the cou-

pling induces an avoided crossing of the two levels as a function of ∆, as illustrated in Fig. 6.2. In

the asymmetric case, the eigenstates lose their symmetric and antisymmetric characters, reduc-

ing to the uncoupled states in the limit of large ∆. The tunneling proceeds at the generalized
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Figure 6.2: Illustration of an avoided crossing of a tunneling doublet as a function of the asym-

metry parameter ∆, as described by Eq. 6.5. The dashed lines show the energies in the absence

of any coupling.
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Rabi frequency
√

℘2 + ∆2, which is faster than in the symmetric case, but the tunneling is

suppressed in the sense that only a fraction ℘2/(℘2 + ∆2) of the population in the initial well

participates in the coherent tunneling oscillation. Hence, the symmetry is an important ingre-

dient for producing the tunneling. For larger asymmetries, a state in one well may couple to a

different state in the other well, causing this picture to break down; such “accidental” degen-

eracies can also lead to tunneling, even in the absence of symmetry.

6.3 Dynamical Tunneling

In the case of the double-well potential, the potential barrier is an obvious impediment to the

classical transport between the two wells. However, it is useful to regard the classical trans-

port more abstractly, from the point of view of the phase space of the double well, as shown in

Fig. 6.3. Here the two wells are represented by regions surrounding stable (elliptic) fixed points.

Classical trajectories within a single well are confined to nearly elliptical trajectories surrounding

only one of the fixed points, while trajectories with enough energy to cross the potential barrier

are represented by larger contours that surround both of the elliptic points. We can thus view

these invariant surfaces along which the trajectories lie (which correspond to KAM surfaces in

Figure 6.3: Phase space for the quartic double-well potential in Fig. 6.1. The barrier tunnel-

ing can be regarded as tunneling between classical invariant tori associated with the two wells.

Classical transport between the wells is forbidden because the classical trajectories are confined

along these invariant surfaces.
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near-integrable systems) as barriers for the classical transport, because classical trajectories can-

not cross these surfaces. This is true in a trivial sense for the double well, because all trajectories

are confined to their corresponding surfaces. However, these invariant surfaces retain their role

as barriers for classical transport in all systems with two degrees of freedom (or, equivalently, pe-

riodically driven systems with one degree of freedom), even when the system is not integrable.

Trajectories can wander freely throughout chaotic regions, but invariant surfaces (including KAM

surfaces, which survive in the presence of weak, nonintegrable perturbations) divide the phase

space and cannot be crossed by any trajectory, as a consequence of the continuity and the deter-

ministic character of the equations of motion. This is not true in systems with N > 2 degrees

of freedom, because the N -dimensional invariant surfaces no longer partition the (2N − 1)-

dimensional surfaces of constant energy (thus allowing for Arnol’d diffusion [Reichl92]). For the

systems that we will consider here, though, we can regard these invariant surfaces as being the

fundamental barriers in phase space to classical transport.

Invariant surfaces are common in nearly integrable systems, and a potential barrier is

not necessary for their existence. Davis and Heller first pointed out that dynamical tunneling

could occur between two separated, symmetry-related stable regions in phase space, where the

classical transport is forbidden by the dynamics and not by a potential barrier [Davis81]. They

considered tunneling between two types of oscillatory motion, which corresponds to tunneling

between two islands of stability in phase space, in a two-dimensional, nonlinear potential with

a reflection symmetry. Tunneling can also occur between other types of stable regions in phase

space, such as bands of KAM surfaces in the phase space of the annular billiard [Doron95].

In fact, the two essential ingredients for tunneling are the existence of a discrete sym-

metry and the separation of the (quasi)energy eigenstates in phase space [Chirikov95]. The

second ingredient is obviously fulfilled in the barrier-tunneling problem, because the low-energy

states in the two wells are localized in their respective wells. In dynamical tunneling between

two islands of stability, states are also localized in the islands, which support states similar to

harmonic-oscillator states [Scharf92] (as one might expect from EBK quantization). As we have

seen before, though, localization is natural in quantum nonlinear systems even with widespread
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chaos. Thus, there is also the possibility of “retunneling” [Sridhar92] between quantum local-

ized states in the Sinai billiard. Here, the transport is forbidden by quantum localization (but

not classically), but oscillatory transport occurs anyway across this quantum “barrier.” A simi-

lar tunneling effect can occur between symmetry-related, exponentially localized states in the

kicked rotor [Casati94].

Previous experimental work in the area of dynamical tunneling has been restricted to

spectroscopic observation of tunneling doublets. It has been pointed out [Frederick88; Heller91]

that the experimental fluorescence-excitation spectrum of the benzophenone molecule in

[Holtzclaw86] shows doublet features that correspond to dynamical tunneling. In this molecule,

there are two symmetry-related benzene rings, each of which can undergo twisting motions. The

tunneling is between the two “local modes,” where one ring twists while the other is at rest; the

spectral doublets then correspond to the symmetric and antisymmetric combinations of the lo-

cal modes. There is also experimental evidence for dynamical tunneling in wave analogies to

quantum mechanics. The tunneling doublets have also been directly observed in the resonance

spectroscopy of a microwave-cavity realization of the annular billiard [Dembowski00]. Further-

more, the Shnirelman peak [Chirikov95] in the level spacing distribution is a similar signature of

dynamical tunneling, and has recently been observed in an acoustical resonator [Neicu01] and

a microwave-cavity experiment [Koch01]. Finally, there is an experimental effort, complemen-

tary to the one described here, to study dynamical tunneling of a Bose-Einstein condensate in

an amplitude-modulated standing wave of light [Hensinger01]. This experiment, while being

similar in some respects to the experiments described below, considers tunneling between a dif-

ferent pair of resonances (second-order resonances [Dyrting93]) than we consider later in this

chapter.

6.3.1 Tunneling in Atom Optics

The basic experimental system that we used to study tunneling is very similar to that used in the

kicked-rotor experiments in Chapter 4 (save for the substantially more complicated quantum-

state preparation), the primary difference being the temporal dependence of the potential. To
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produce a more manageable, mixed classical phase space, the amplitude modulation of the po-

tential was relatively smooth:

H =
p2

2m
− 2V0 cos2

(
πt

T

)
cos(2kLx) . (6.9)

The quantities here are as they were defined in Chapter 4. This Hamiltonian is again that

of the pendulum, but with a sinusoidal variation of the potential amplitude in time from zero

to 2V0 with period T . We can make a transformation into scaled units that is similar to the

transformation used for the kicked rotor, since this system is effectively a kicked rotor with long,

sinusoidal pulses:

x′ = 2kLx
p′/k̄ = p/2�kL

t′ = t/T
H ′ = (k̄T/�)H
α := (k̄T/�)V0

k̄ := 8ωrT .

(6.10)

Here, we have chosen the time scaling so that the scaled period of the modulation is unity, α is

the scaled amplitude of the potential (related to the amplitude in pendulum units by α = k̄2αp),

and k̄ is again the effective Planck constant in the scaled units. The Hamiltonian in scaled units,

after dropping the primes, is

H =
p2

2
− 2α cos2(πt) cos(x) , (6.11)

with the Schrödinger equation given byHψ = ik̄∂tψ.

In the spirit of the analysis of Section 4.4.4, we can rewrite the potential as

V (x, t) = −α cos(x) − α

2
cos(x+ 2πt) − α

2
cos(x− 2πt) . (6.12)

In this form, the potential appears as the sum of three pendulum-like terms with time-inde-

pendent amplitude. Thus the modulated potential can be regarded as a combination of three

pendulum potentials; two of these potentials are moving with momentum ±2π, and the third

is stationary. When this system is sampled at integer times, these three terms produce primary

resonances in phase space centered at (x, p) = (0,±2π) and (0, 0). This structure is evident

in the phase spaces in Appendix C, especially for small α. For larger α, the resonances interact,
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producing a phase-space structure of bands of chaos surrounding the three main islands of stabil-

ity. The tunneling that we consider here is between the two outer islands of stability, which are

related to each other by reflection symmetry through the origin (x, p) = (0, 0). In configuration

space, the tunneling occurs between a state of coherent motion in only one direction to a state

of the oppositely directed motion. These two states each correspond to being tightly bound to

one of the two moving components of the lattice. The center island does not directly participate

in the tunneling.

To observe tunneling in the experiment, we used the state-preparation procedure de-

scribed in Chapter 5. This procedure produced an initial state centered on one of the outer

resonances with narrow slices taken out of the overall Gaussian profile (because of the narrow

Raman velocity selection). A schematic representation of the initial condition for k̄ = 2.08

(corresponding to a 20 µs modulation period) and an 800 µs Raman-pulse duration is shown in

Fig. 6.4 with the classical phase space for the experimental value of α = 10.5. In this strongly

driven regime, the center island has mostly dissolved into the chaotic sea, making this a clean

regime for studying tunneling between the remaining two islands. The two islands are located

8 · 2�kL apart in momentum. The measured evolution of the momentum distribution in this

case is plotted in Fig. 6.5, where the distribution was sampled every 2 modulation periods out to

80 periods. Four of these distributions are also shown in more detail in Fig. 6.6. Four coherent

oscillations of the atoms between the islands are apparent before the transport is damped out.

During the first oscillation, nearly half of the atoms appear in the secondary (tunneled) peak.

At this point, a few words are in order concerning the initial condition plotted in Fig. 6.4.

The ellipses shown are the 50% contours of the atomic distribution in phase space. This depic-

tion represents a classical distribution with the same x and pmarginal distributions as the Wigner

function for the initial state, but is not itself the correct Wigner function. The proper Wigner

function for this state is more complicated, and can be constructed from the plotted distribu-

tion as follows. Whereas the distribution shown has momentum slices spaced by k̄, the Wigner

function has additional (positive) slices within the Gaussian profile between these slices, so that

the spacing is k̄/2. This combined structure is then repeated a distance π away in position,
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Figure 6.4: Phase space corresponding to the experimental conditions for the data in Fig. 6.5

(α = 10.5). A schematic representation of the atomic initial state is superimposed in red on

the upper island (k̄ = 2.08), showing the subrecoil structure that we expect from the state-

preparation procedure. A magnified view of the upper island and initial quantum state is also

shown.
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Figure 6.5: Observation of coherent tunneling oscillations in the momentum-distribution evolu-

tion between the two symmetry-related islands of stability, as shown in Fig. 6.4. The two island

centers are separated in momentum by 8 · 2�kL. In this plot, the distribution was sampled ev-

ery 40 µs (every 2 modulation periods). Each of the distributions represent averages over 20
iterations of the experiment.
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Figure 6.6: Detailed view of the first four highlighted distributions in Fig. 6.5, where it is clear

that a significant fraction of the atoms tunnel to the other island. The distributions here were

averaged over 100 iterations of the experiment.
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except that the slices added to the original three have negative amplitude in this new group.

The population k̄/2 away from the center of the wave packet integrates to zero when comput-

ing the p marginal distribution, and the population is only in the vicinity of the island when

computing the x marginal distribution. These extra structures represent coherence of the wave

packet over multiple wells of the potential, where the coherence length scales as the inverse of

the width of the narrow slices. Finally, we note that the initial condition plotted here assumes

a minimum-uncertainty Gaussian, but in the experiment the wave packet was distorted slightly

by anharmonic evolution in the lattice during the state preparation.

6.3.2 Broken Symmetry

The subrecoil Raman velocity selection is important not only to produce a nearly uncertain-

ty-limited wave packet, but also in order to satisfy a quantum symmetry required to observe

tunneling. This symmetry stems from the discrete translational symmetry of the potential, as

discussed in Chapter 2, which causes momentum transitions to occur in discrete steps of k̄ (or

2�kL in unscaled units). Thus the momentum state |nk̄ + δ〉 (where n is an integer) is coupled

to the |−nk̄+ δ〉 state via 2-photon transitions. For 0 < |δ| < k̄/2, these states are therefore not

coupled to their symmetric reflections about p = 0. In the language of the double-well potential

above, this situation is equivalent to an asymmetric double well, because the potential couples

two states with a difference of 2nk̄δ in energy. Thus, complete tunneling only fully occurs

for the |nk̄〉 momentum states and is suppressed for states off this integer ladder. A deviation

in momentum from this symmetric ladder is equivalent to a broken time-reversal symmetry

[Casati94], and the symmetric/antisymmetric doublet character can be sensitive to this broken

symmetry [Chirikov95]. This symmetry condition is automatically fulfilled for a rotor, because

the periodic boundary conditions select the tunneling states, but in the case of a particle in

an extended potential, as in the present experiment, careful state preparation is required to

populate only the proper states. Thus the subrecoil velocity selection, coupled with the rest

of the state-preparation sequence, fulfills the simultaneous goals of producing a wave packet

localized on an island of stability and populating only states with momentum nearly an integer

multiple of k̄.
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The importance of the subrecoil momentum selection is demonstrated in Fig. 6.7,

where the evolution of 〈p〉 corresponding to the data in Fig. 6.5 (with an 800 µs Raman se-

lection pulse) is shown, along with data for 400 and 200 µs Raman pulses. Shorter Raman pulses

result in wider velocity slices, so that fewer of the atoms fulfill the symmetry condition, and thus

the tunneling oscillations are suppressed as the Raman pulse duration decreases. Also shown is

the case where the experiment was performed without any Raman velocity selection, and the

state-preparation sequence in the 1D lattice was performed immediately after cooling in the 3D

lattice. The momentum distribution after the atoms were released from the 3D lattice was not

subrecoil, so the prepared wave packet was no longer minimum uncertainty (the wave-packet
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Figure 6.7: Comparison of tunneling oscillations for different Raman π-pulse durations, and

thus selected velocity widths (α = 10.5, k̄ = 2.08). The strongest oscillations shown here

(circles) correspond to the longest (800 µs) Raman velocity selection pulse used, which implies

a momentum slice with a HWHM of 0.03 · 2�kL. The data here are derived from the momentum

distributions in Fig. 6.5. Also shown are data for a 400 µs selection pulse (corresponding to a

HWHM of 0.06 · 2�kL) and a 200 µs selection pulse (corresponding to a HWHM of 0.12 · 2�kL),

illustrating the reduced contrast in the tunneling oscillations as the pulse duration is decreased.

The heavy solid line corresponds to a measurement where no Raman velocity selection was

performed, but the atoms were subjected to the state-preparation sequence after cooling in the

3D lattice (where they have a HWHM in momentum of 0.8 · 2�kL). The tunneling oscillations

are completely suppressed in this last case. The data were averaged over 20 (800 µs tag), 10
(400 µs tag), 5 (200 µs tag), and 1 (no Raman tag) iterations of the experiment.
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area in phase space was about three times the size of a minimum-uncertainty state). More im-

portantly, though, there was no subrecoil structure in this last case, so that the tunneling oscil-

lations are completely absent in the figure. The evolution of the momentum distribution in this

case is shown in Fig. 6.8. There is perhaps a half of a tunneling oscillation at the beginning of the

evolution, but the oscillations are again clearly suppressed. Most of the atoms have suppressed

tunneling amplitudes, because they are too far away from the proper tunneling momenta. Also,

because there is a continuum of states populated near the symmetric ladder, the different mo-

mentum classes tunnel at slightly different rates. This situation provides another mechanism

for damping of the coherent oscillations, similar to broadened excitation of a two-level atom.

We also studied this broken symmetry more directly by fixing the velocity-selection

width at the minimum value and varying the locations of the velocity slices within the Gaussian

profile. This was accomplished easily by slightly varying the detuning of the Raman pulse before

Figure 6.8: Evolution of the momentum distribution as in Fig. 6.5, but without Raman velocity

selection. The tunneling oscillations are clearly suppressed here.
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loading the atoms into the standing wave. The experimental results are shown in Fig. 6.9, where

the data with the optimum Raman detuning are compared to data with two other Raman detun-

ings. As the detuning increases, the tunneling oscillations are again suppressed, being almost

fully destroyed for an offset corresponding to 0.12 · 2�kL in momentum. The tunneling is thus

quite sensitive to this broken symmetry.

Fig. 6.10 shows simulations of the tunneling oscillations that model the Raman tag

widths in Fig. 6.7 as well as oscillations in the limit of arbitrarily narrow velocity selection (i.e.,

the rotor case). The simulation assumes an overall profile of a minimum-uncertainty wave packet

with the same center and momentum width as in the experiment, along with ideal Raman π-

pulse momentum-selection profiles. With no width, there are no signs of damping, and the

tunneling is nearly complete. With wider momentum slices, a smaller fraction of the atoms

successfully tunnels, and the tunneling oscillations become increasingly damped. The Raman

tagging thus explains a substantial part of the incomplete tunneling and damping in the exper-
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Figure 6.9: Comparison of tunneling oscillations for different Raman detunings (α = 10.5, k̄ =
2.08). The strongest oscillations observed (circles) correspond to Raman velocity selection at

p = 0. The other two cases are for velocity selection at p = 0.05 · 2�kL (squares), where the

oscillations are partially suppressed, and p = 0.12 · 2�kL (triangles), where the oscillations are

almost completely suppressed.
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iment. In principle, then, a Raman tagging pulse even longer than 800 µs could have provided

more complete tunneling, although such a pulse was impractical, as the atoms would have fallen

too far with respect to the beams over the course of the experimental sequence.

Finally, the reader may have noticed that the average momenta 〈p〉 in the experimental

plots are reduced in magnitude compared to what one might expect. This is especially evident

at the beginning of the evolution, where the average momentum appears to be around 3.3 · 2�kL,

even though the distribution is peaked at 4.1 · 2�kL. This effect is an artifact of the reduction

of the distributions to average values, where the broad backgrounds of the distributions and the

truncation at large momenta (the k̄ = 2.08 data are truncated beyond±9·2�kL and the k̄ = 1.04

data are truncated beyond±14.1 · 2�kL) skew the computed means to have magnitudes that are

smaller than their actual values.
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Figure 6.10: Simulation of the effects of the Raman tag width on the tunneling signal (α = 10.5,
k̄ = 2.077). The average momentum 〈p〉 is plotted every 20 µs modulation period for a single,

minimum-uncertainty wave packet with an overall Gaussian envelope (out of which the Raman-

selected slices are taken) centered at (x0, p0) = (0, 4.1 · 2�kL), with σp = 1.1 · 2�kL, to model

the experimental conditions in Fig. 6.7. This calculation assumes idealized (square) π-pulse
lineshapes, as in Eq. (5.26), for the Raman pulse durations used in the experiment. The case of

an arbitrarily narrow velocity selection is also shown, which maximizes the tunneling-oscillation

amplitude.
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6.3.3 Tunneling Dependence on Wave-Packet Location

To argue that the observed tunneling was indeed between islands of stability, it was impor-

tant to demonstrate that the tunneling is sensitive to the location of the wave packet in phase

space. Just after the state preparation sequence for the above experiments, the wave packet was

moving. Thus, it was possible to displace the initial wave packet in the x-direction in phase

space simply by inserting a time delay between the usual state-preparation procedure and the

amplitude-modulated lattice phase of the experiment. Doing so produced a shift of the wave-

packet center, where the distance was proportional to the time delay, along with a shear of the

profile of the wave packet due to dispersion effects. Fig. 6.11 shows the usual zero-delay case

compared to data with three different time delays, corresponding to displacements of 1/4, 1/2,
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Figure 6.11: Comparison of chaos-assisted tunneling (α = 10.5, k̄ = 2.08) for different free-

drift times before the standing-wave interaction, which amount to different displacements of

the initial condition in the x-direction in phase space, as illustrated in Fig. 6.12. The strongest

oscillations occur for zero drift time (filled circles), where the initial wave packet is centered

on the island of stability as in Fig. 6.4. The oscillations are significantly suppressed for a 3.8
µs drift time (squares), which displaces the initial wave packet center by 1/4 of a period of

the standing wave. Tunneling oscillations are completely suppressed for a 7.6 µs drift time

(triangles), corresponding to a 1/2-period offset of the initial wave packet. For a 15.1 µs drift

time (open circles), the wave packet is again centered on the island, and coherent oscillations

are restored. The data here were averaged over 20 iterations of the experiment.



6.3 Dynamical Tunneling 217

and 1 full period of the lattice potential. Schematic plots of the initial conditions in the clas-

sical phase space are shown in Fig. 6.12 for these four cases. The tunneling oscillations are

strongest for zero time delay, when the wave packet was centered on the island. For the 1/4-

period displacement, the wave packet was centered in the chaotic region next to the island,

and the tunneling oscillations are significantly suppressed. For the 1/2-period displacement, the

wave packet was centered in the outer stability region, and the tunneling oscillations are almost

completely suppressed. For the longest time delay, the wave packet was displaced by a full pe-

riod of the potential and thus is again centered on the island. The tunneling oscillations return

0.0 µs delay 3.8 µs delay

7.6 µs delay 15.1 µs delay

Figure 6.12: Initial conditions in phase space for the four time delays used in obtaining the data

of Fig. 6.11. The large ellipse around the three narrow population slices in each case marks the

overall profile of the wave packet to guide the eye.
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in this case, but with smaller amplitude due to the stretched character of the wave packet after

the dispersive free evolution. Hence, it is clear that the islands of stability were important in

supporting the tunneling in this experiment.

We have also displaced the center of the wave packet in the p-direction in phase space

by changing the amplitude of the lattice phase shift during the state preparation (and adjusting

the subsequent evolution period in the lattice accordingly). For the experimental parameters

here, we varied the wave packet center in steps of 0.5 · 2�kL, and we observed strong tunneling

when the wave packet was centered at p/2�kL = 3, 3.5, and 4, while tunneling was suppressed

at the other values outside this range.

6.4 Chaos-Assisted Tunneling

In considering the tunneling phenomenon in the experiment, we have thus far focused only on

the role of the islands of stability in the tunneling. However, as we will now discuss, the chaotic

region surrounding the islands is important in enhancing the tunneling process, and we will argue

that the tunneling in the experiment is due to chaos-assisted tunneling.

The possibility of tunneling enhancement by classical chaos was first introduced in a

numerical study by Lin and Ballentine [Lin90], where it was found that the tunneling rate

between islands of stability in the periodically driven, double-well potential could be orders of

magnitude larger than the tunneling rate in the undriven (integrable) double well. While the

presence of two islands related by a discrete symmetry is important in supporting the tunneling

in this system [Peres91a], the authors attributed the increased tunneling rate to the presence

of the chaotic region in the classical phase space. It was subsequently shown that the tunneling

rate is correlated with the degree of overlap of the tunneling states with the chaotic region

[Utermann94], which also points to the role of the chaotic sea as a catalyst for the tunneling.

This enhancement of the tunneling was understood in [Bohigas93; Tomsovic94] (where the

term “chaos-assisted tunneling” was introduced) in terms of an avoided crossing of the tunneling

doublet with a third level associated with the chaotic region, which can greatly increase the

tunnel splitting. Because the (quasi)energies of the chaotic states exhibit strong and irregular
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dependence of the system parameters, the tunneling rate also exhibits irregular fluctuations over

orders of magnitude [Roncaglia94; Zanardi95; Mouchet01], sometimes reaching zero for exact

crossings of the tunneling doublet (the “coherent destruction of tunneling” [Grossman91]). The

smooth, universal dependence of the tunneling rate on �, as mentioned above for the double-well

tunneling, is therefore lost for chaos-assisted tunneling. In addition to this three-state picture,

chaos-assisted tunneling has also been understood in terms of the dominance of indirect paths,

which are multi-step paths that traverse the chaotic region, over direct paths, which tunnel in

a single step and are responsible for regular (two-state) tunneling [Frischat98]. Thus, chaos-

assisted tunneling occurs as small portions of the population from the initial wave packet break

off, transport through the chaotic region, and then accumulate in the symmetric region, without

a large population building up in the chaotic region [Tomsovic94; Tomsovic01]. By contrast,

direct tunneling occurs with an always negligible population in the intermediate region.

The sense in which we mean “chaos-assisted tunneling” here is the influence of the

chaotic region on tunneling transport between symmetry-related regions in phase space, but this

term has also been applied in the sense of open systems, where the tunneling implies an escape

from a bound state. In this vein, chaos-assisted tunneling has been invoked to explain fluctua-

tions in the energy and rate of ionization of Rydberg atoms in microwave fields [Zakrzewski98],

and also to explain mode lifetimes in weakly deformed optical micro-resonators [Nöckel97].

Previous experimental work in chaos-assisted tunneling has been performed in the spec-

troscopy of a microwave resonator in the shape of an annular billiard [Dembowski00]. The au-

thors measured the dependence of the quasidoublet splittings on the locations of the states in

phase space and on the eccentricity of the cavity, demonstrating an enhancement in the split-

ting for states near the border between the stable and chaotic regions. Chaos-assisted tunnel-

ing has also been invoked to explain features in the decay of superdeformed nuclear states to

normal-deformed states [Åberg99], although the interpretation here is not entirely straightfor-

ward [Tomsovic01]. It is also worth noting that another atom-optics experiment studies tunnel-

ing of atoms in an optical lattice of double wells [Haycock00], where the classical description

is chaotic as a result of the coupling of the center-of-mass motion to the spin state of the atom
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[Ghose01]. So far, though, the symptoms of chaos-assisted tunneling that we describe below

have not been observed in this system. Other experiments [Fromhold94; Wilkinson96a] con-

sider the transport in the resonant tunneling diode, where a strong magnetic field induces chaos

in the classical limit. However, the tunneling here is enhanced by energy resonances of states

on either side of a barrier (corresponding to periodic orbits in the chaotic quantum-well region),

and thus the tunneling is not enhanced by the chaos in the sense of this chapter.

6.4.1 Singlet-Doublet Crossings

We will now review the simplified three-state model introduced in [Bohigas93; Tomsovic94] be-

cause of its importance in understanding chaos-assisted tunneling and its utility in interpreting

the experimental data. Because we are considering a periodically driven system, though, we will

consider a Floquet-Hamiltonian model as in [Kohler98], rather than the original Hamiltonian

model. We recall from Section 4.5.1 that the Floquet states are eigenstates of the unitary evolu-

tion operator U(t+1, t) over one period of the modulation, with eigenvalue exp(−iεn/k̄), where

εn is the quasienergy. The eigenstates can also be written as

|ψn(t)〉 = e−iεnt/k̄|χn(t)〉 , (6.13)

where the state |χn(t)〉 is periodic in time with the same period as the modulation. Thus, the

quasienergies represent the phase evolution of the Floquet states (in a stroboscopic sense), just

as the energies govern the phase evolution of the energy eigenstates for autonomous systems.

The periodic states |χn(t)〉 are also eigenstates of the Floquet Hamiltonian [Mouchet01],

H := H − i�∂t, (6.14)

with eigenvalue εn. We will therefore construct a model Floquet Hamiltonian that captures the

essence of chaos-assisted tunneling.

We consider a doublet of tunneling states, localized on the two islands of stability (reg-

ular regions), with quasienergies εr and εr + δr, so that δr parameterizes the tunneling rate in

the absence of interaction with other levels. These states have opposite parity, and for the sake
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of concreteness, we can take the state with quasienergy εr to be of even parity. We also con-

sider a third state in the chaotic region (although we note that three-level crossings can also be

induced by states in other stable regions [Bonci98; Frischat98; Brodier01]), with quasienergy

εr + ∆c. Without loss of generality we may assume that this state has even parity; notice that

the states in the chaotic region do not generally occur in narrowly spaced doublets, so that we

can ignore the effect of the corresponding state of odd parity. The chaotic state does not inter-

act with the odd member of the tunneling doublet, but we assume that there is some nonzero

interaction between the two even states. We may then write the model Floquet Hamiltonian as

[Bohigas93; Tomsovic94; Kohler98]

H =


 εr + δr 0 0

0 εr β/2
0 β/2 εr + ∆c


 , (6.15)

where β represents the coupling between the chaotic state and the even regular state. Thus, the

two coupled states undergo an avoided crossing, with quasienergy solutions of the same form as
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Figure 6.13: Illustration of a three-level avoided crossing of a tunneling doublet with a third

(chaotic) state, as described by the model (6.15). The behavior of the three quasienergies is

shown as a function of the detuning ∆c of the chaotic state, for an unperturbed doublet splitting

δr/β = 0.1. The chaotic state interacts with the regular state of the same parity (both shown as

blue lines), and the other tunneling state (the green line) is unaffected by the crossing in this

simple model. The dashed lines show the two repelling states in the absence of any coupling.
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in the two-level case in Eqs. (6.5)-(6.8), while the odd regular state remains unchanged. This be-

havior is illustrated in Fig. 6.13. In the case where the coupling energy β/2 is large compared to

the two-level splitting δr (which is the case when the regular states have substantial overlap with

the surrounding chaotic region), the tunnel splitting can be greatly enhanced, becoming of the

order of β/2 between the odd state and either of the even states near the center of the crossing.

As one might expect in an avoided crossing, the even regular state and the chaotic state exchange

their character as ∆c is swept through zero, as verified numerically in [Latka94b]. Thus, near

the center of the crossing, the two even states each have population both in the islands and in

the chaotic region, whereas away from the crossing it is possible to clearly distinguish a predom-

inantly regular and predominantly chaotic even state. In a singet-doublet crossing, one expects

a complicated time dependence, compared to the sinusoidal two-state tunneling, because three

states will be excited by a wave packet localized on a single island. In general, the three splittings

will all be different, leading to complicated beating in the time domain [Kohler98].

6.4.2 Comparison with Integrable Tunneling

The tunneling that we have studied is between two oppositely directed modes of motion. In

unmodulated optical lattices, however, Bragg scattering is a well-known dynamical-tunneling

mechanism, as we discussed in Section 2.7.1. Bragg scattering produces similar results to the

tunneling that we have described, including sensitivity to the same broken symmetry that we

discussed above, even though there is no classical chaos without a modulation of the lattice. It

was therefore important to demonstrate that the tunneling here is not simply Bragg scattering,

but that the amplitude modulation has a substantial effect on the tunneling dynamics. We have

done this already to a certain extent by demonstrating that the initial state must be centered on

the island of stability for tunneling to occur (Bragg scattering occurs between plane-wave states,

which are delocalized in position, and thus should not be sensitive to spatial displacements of

the initial condition). However, a direct comparison between tunneling in chaotic and integrable

systems is also illuminating.

A sensible integrable counterpart of the modulated system arises by using the optical
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lattice with constant amplitude, where the potential depth is taken to be V0. Doing so produces a

pendulum, such that the lattice intensity is the same, on average, as in the amplitude-modulated

system. The phase space for the pendulum corresponding to the experimental conditions in

Fig. 6.4 is shown in Fig. 6.14, along with the same initial condition as before. The wave packet is

centered outside the separatrix, so that classical transport to the opposite momentum region is

also forbidden here. However, high-order Bragg scattering, which is a manifestation of quantum

above-barrier reflection [Heller99], allows quantum oscillatory transport between these momen-

tum regions.

Figure 6.14: Phase space of the pendulum, with the same average potential amplitude as the

modulated-pendulum case in Fig. 6.4. The same initial condition is also shown here. The initial

state is centered outside the separatrix, so that classical transport to the opposite (symmetric)

momentum region is also forbidden here. Notice that the momentum axis is in pendulum scaled

units (i.e., multiples of 2�kL), rather than the scaled units for the modulated pendulum.
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We recall from Section 2.7.1 that the Bragg oscillation frequency is

Ω′
B,n =

αn

k̄2n−1[(n− 1)!]2
, (6.16)

when adapted to the scaled units of the amplitude-modulated pendulum. In this form, it is

not obvious that Bragg scattering has the expected universal dependence exp(−S/k̄) for two-

state tunneling that we mentioned above. Since tunneling occurs from some initial momentum

(n/2)k̄ to −(n/2)k̄ (for integer n) as an nth-order scattering process, the order n is effectively a

function of k̄. Then, in the semiclassical limit of large n, we can invoke Stirling’s approximation,

and the Bragg rate becomes

Ω′
B,n  1

2π

[
(2p)2

αe2

]−p/k̄

, (6.17)

which is consistent with the expected scaling with k̄. Notice that the factor in the square braces

is greater than unity, since to be in the Bragg regime (where population in the intermediate
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Figure 6.15: Comparison of chaos-assisted tunneling oscillations (circles) to transport in the

corresponding quantum pendulum (squares). The experimental conditions are α = 10.5 and

k̄ = 2.08 in the modulated case, with the same average intensity used in the pendulum case.

No tunneling oscillations are observed in the pendulum case over the interaction times studied

in the experiment. The expected period for 8th-order Bragg scattering is 1 s, which is much

longer than the 400 µs period of the tunneling between islands of stability. The data here were

averaged over 20 iterations of the experiment.
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states can be adiabatically eliminated) the wave packet must be outside the classical pendulum

separatrix, which implies that |p| > 2
√
α.

The tunneling oscillations of Fig. 6.5 are compared with the behavior of the correspond-

ing pendulum in Fig. 6.15. No tunneling oscillations are visible in the integrable case over the

time scale studied in the experiment. Since the initial distribution is peaked near 4 · 2�kL, the

dominant transport process in the pendulum is 8th-order Bragg scattering. For n = 8, α = 10.5,

and k̄ = 2.08, the Bragg period is about 1 s, which is much longer than the 400 µs period of the

tunneling oscillations in the chaotic case (and thus the experimental Bragg measurement is in

accord with our expectations).

We have also demonstrated tunneling in a parameter regime that is closer to the classical

limit (k̄ = 1.04), as shown in Fig. 6.16. The initial distribution here is peaked around 8 · 2�kL,

and so this coherent, 32-photon process is similar to 16th-order Bragg scattering. The expected

Bragg period here is 20 years, which is long compared to the 250 µs period of the tunneling in
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Figure 6.16: Tunneling oscillations for α = 11.2, k̄ = 1.04 (10 µs modulation period). The

corresponding two-state (integrable) tunneling mechanism is 16th-order Bragg scattering, which

has an expected period of 20 years. The observed tunneling rate is clearly much smaller than the

expected Bragg period. The data here were averaged over 10 iterations of the experiment.
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the chaotic case, and is even long compared to the coherence time of a graduate student. Thus,

it is clear that in some sense the chaos enhances the transport, in that the tunnel splittings are

much larger in the chaotic case than in the corresponding integrable case.

Of course, it could be the case that the amplitude modulation enhances the two-level

tunneling rate without the influence of a third, chaotic state, especially in view of the rapid de-

pendence of the Bragg splitting on the lattice intensity. Although we provide additional experi-

mental evidence for chaos-assisted tunneling below, we will now derive a simple estimate for the

direct tunneling rate with the modulation. Since Bragg scattering represents the two-level trans-

port mechanism in this system, and corresponds to a resonantly coupled two-level system if the

proper momentum symmetry condition is satisfied, we can use the well-established solution to

the two-level atom (without damping) exposed to a resonant driving field with time-dependent

intensity [Allen87]. In this case we define the pulse integral,

φ =
∫ t

0

ΩB,n(t′) dt′ , (6.18)

in terms of which the tunneled population can be written as sin2(φ/2) (note that φ = ΩB,nt for

constant drive, as in normal Bragg scattering). Since the tunneling period is substantially longer

than the modulation period, we can simply average the Bragg rate over a modulation period, and

thus the modulation enhances the two-level tunneling rate by a factor∫ 1

0

[2 cos2(πt)]n dt (6.19)

for nth-order transport. This factor is about 50 for the k̄ = 2.08 case and about 9000 for the

k̄ = 1.04 case. Neither of these numerical values is sufficiently large to explain the enormous

differences in the tunneling rates in the integrable and chaotic cases.

6.4.3 Tunneling Dependence on Parameter Variations

To establish that the tunneling in the modulated lattice is chaos-assisted tunneling, it is also

important to examine the dependence of the tunneling as the two experimental parameters (α

and k̄) are varied. As we noted above, the dependence of the tunneling rate should be very

different for direct and chaos-assisted tunneling. In this section, we examine the variation of
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the tunneling as a function of α for two different values of k̄. Operationally, α is a much more

convenient parameter to vary, because it only requires a change in laser intensity, whereas k̄ is

more difficult because it requires changing both the laser intensity and the modulation period (to

keep α fixed) as well as a new set of parameters for the SPASM state preparation (to maintain

the initial condition at the same phase-space location). While we do not necessarily expect
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Figure 6.17: Dependence of the tunneling as the optical-lattice intensity α is varied for k̄ = 2.08
(20 µs modulation period). The color indicates the value of 〈p〉, with black representing the most

negative values and white the most positive. The tunneling is absent at the extreme values of

α shown here, but tunneling oscillations appear in the center of the α range. This behavior is

consistent with the avoided-crossing mechanism for chaos-assisted tunneling. The data here

were averaged over 10 iterations of the experiment.
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to see rapid variations in the tunneling rate as we vary α, due to inhomogeneous broadening

(different atoms see different optical intensities, depending on their transverse location in the

optical lattice, leading to about a 5% spread in α over the atomic sample), there are nevertheless

signatures of three-state tunneling in the data.

The dependence of the tunneling oscillations in the measured evolution of 〈p(t)〉 is

shown in Fig. 6.17 for k̄ = 2.08. Tunneling is visible in the range of α from about 7 to 14, but

is suppressed outside this range. Below this range the tunneling is presumably too slow to be

observed (see the Floquet-spectrum analysis in the next section), and above this range the outer

islands have completely dissolved into the chaotic sea, so that we no longer expect clean tun-

neling to occur. The tunneling rates for this data are plotted in Fig. 6.18. The tunneling rate

does not fluctuate strongly as α changes, but there are two interesting features to notice. The

first is that the tunneling rate decreases as a function of α. This dependence is the opposite

of our expectation of direct tunneling, where as we have seen above the tunneling rate should
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Figure 6.18: Dependence of the tunneling rate on the well depth α, for k̄ = 2.08 (20 µs modula-

tion period). The periods were extracted from the data in Fig. 6.17 using both numerical Fourier

transform and nonlinear fitting techniques. The error bars account for both fitting uncertainty

and the width of the spectral peaks. In the range of α from 8.9 to 10.3, two distinct frequencies

can be resolved in the tunneling data. The zero-frequency data points at the edges of the plot

indicate that no tunneling frequency could be extracted from the data at these locations.
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Figure 6.19: Example of tunneling oscillations from Fig. 6.17, where a single tunneling frequency

persists for the maximumduration of the optical-lattice interaction. The parameters areα = 8.0,
k̄ = 2.08. The data points are connected by lines for clarity.
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Figure 6.20: Example of tunneling oscillations from Fig. 6.17, where two tunneling frequencies

are clearly present. The parameters are α = 9.7, k̄ = 2.08. The data points are connected by

lines for clarity.
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increase with α, following a power-law dependence. This behavior is thus strong evidence that

the tunneling is chaos-assisted, where one or more chaotic levels has a definite influence on the

doublet splitting. The second feature to notice is that two frequencies are clearly resolvable in

the tunneling in a comparatively narrow window in α (from about 8.5 to 10.5). The one- and

two-frequency behaviors of the tunneling are illustrated in Fig. 6.19, where one tunneling fre-

quency is evident (for α = 8.0), and in Fig. 6.20, where the beating of two frequencies is clearly
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Figure 6.21: Dependence of the tunneling as the optical-lattice intensity α is varied for k̄ =
1.04 (10 µs modulation period). The color indicates the value of 〈p〉. The behavior here is

qualitatively similar to the behavior in Fig. 6.17, but the tunneling occurs in a substantially

narrower interval in α. The data were averaged over 10 iterations of the experiment.
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apparent (for α = 9.7). Thus, there is some sensitivity of the tunneling to variations in α in

this regime. This behavior is also consistent with the three-state model near the center of a

singlet-doublet crossing. In this model, the initial wave packet populates a regular state (local-

ized on the islands) and two hybrid states, which have population in both the islands and in the

chaotic sea. There should thus be two frequencies associated with the tunneling, corresponding

to the two splittings between the regular state and the two hybrid states. In general, these two

splittings will not be equal, but should be similar near the center of the avoided crossing, leading

to two-frequency beating in the tunneling dynamics.

The variation of the tunneling behavior in the k̄ = 1.04 case is plotted in Fig. 6.21, with

the extracted tunneling rates plotted in Fig. 6.22. The observed tunneling rates appear to have

weaker dependence on α than in the k̄ = 2.08 case. However, the tunneling is only visible in a

much narrower interval in α, from about 9.5 to 12.5. Thus, in a sense, the tunneling here is more

sensitive to variation in α than in the k̄ = 2.08 case.
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Figure 6.22: Dependence of the tunneling rate on the well depth α, for k̄ = 1.04 (10 µs modula-

tion period). The periods were extracted from the data in Fig. 6.21 using both numerical Fourier

transform and nonlinear fitting techniques. The error bars account for both fitting uncertainty

and the width of the spectral peaks. The zero-frequency data points at the edges of the plot

indicate that no tunneling frequency could be extracted from the data at these locations.
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One question that remains is why the tunneling rate does not go smoothly to zero at the

edges of the α intervals where tunneling is observed, especially at the lower end of the interval

where the tunnel splitting is expected to become very small. In the experiment, the disappear-

ance of the tunneling as α is swept comes about as the oscillations decrease in amplitude and

become damped more quickly, until the oscillations are no longer discernible. One possible ex-

planation is the change in the location of the two islands, which move to larger momentum as α

increases (see the next section for an empirical expression for the island locations). In the exper-

iment, the initial condition was held fixed as α is swept, so that there may have been less overlap

with the tunneling Floquet states if the islands moved too far. However, over the intervals where

tunneling was observed, the islands moved only by ±0.3 · 2�kL for both the k̄ = 2.08 and the

k̄ = 1.04 data sets, which is a substantially smaller amount than the respective σp = 1.7 · 2�kL

and σp = 2.1 · 2�kL momentum uncertainties of the initial conditions in the two cases. Thus,

misalignment of the initial conditions does not account for the disappearance of the tunneling at

the extreme α values here. Another possible explanation lies in a suggestion by [Latka94a] that

three-level tunneling is more robust to a symmetry-breaking interaction than two-level tunnel-

ing. Since the range of populated quasimomenta (and thus the degree of broken symmetry) is

fixed by the Raman velocity selection, the tunneling away from the avoided crossings may simply

disappear, as opposed to being manifested as a slow tunneling oscillation.

6.4.4 Floquet Spectra

In the context of understanding the observed tunneling dependence on α, it is useful to consider

the quasienergy spectrum for this system. Computed spectra for the k̄ = 2.077 and k̄ = 1.039

cases are plotted in Figs. 6.23 and 6.24, respectively. These spectra only show the states with

definite parity, falling on the symmetric ladder of momentum states p = nk̄ (for integer n),

corresponding to zero quasimomentum. The quasienergies were calculated by numerically con-

structing the unitary evolution operator for one period of the modulation and then diagonalizing

the resulting operator. The even and odd tunneling states are also highlighted in these spectra.

These states were identified by finding the states with maximum overlap with a minimum-

uncertainty Gaussian wave packet that was centered on the fixed point of the island and had
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the same aspect ratio as the elliptical trajectories near the fixed point (i.e., where the linearized

equations of motion are valid). The centers of the outer islands are given approximately by the

empirical model

p0 = ±(2π + 0.1988 · α+ 0.002953 · α2 − 0.0000327 · α3) (6.20)

(with x = 0), which is accurate at about the 0.02% level from α = 0 to the critical value αc ≈

11.54 where these islands become unstable and bifurcate into pairs of islands. The aspect ratio

of the elliptic invariant surfaces near the island centers is given approximately by the empirical

model

∆p
∆x

=
√
α(α− αc)(−0.0439 + 0.00151 · α+ 0.0000170 · α2) , (6.21)

which is accurate to the 1% level or better in the same range. The tunneling states are not

identified for α > αc, where it is difficult to assign states to the island remnants.

In the spectrum for k̄ = 2.077, the first avoided crossing (with an even-parity state of

smaller quasienergy) does not occur until about α = 7, where the splitting also first becomes

significant. This behavior is consistent with the experimental data in Fig. 6.17, where tunneling

oscillations are also first observed around α = 7. Beyond this point, the two even-parity states

maintain a similar distance from the odd tunneling state, and this holds true in the regime where

two tunneling frequencies are visible in the data. These two even states then move back towards

each other (and the odd tunneling state) as they interact with two other even states, and this

behavior may explain the decreasing tunneling rate as a function ofα, although it is again difficult

to pinpoint the tunneling states in this regime of large α.

In the k̄ = 1.039 spectrum, the singlet-doublet crossings are much more apparent.

There are several clear avoided crossings involving the tunneling doublet in the range shown,

but it is not until the final avoided crossing before the islands become unstable that the splitting

becomes large enough to observe experimentally. The experimental observation of tunneling be-

ginning with α = 9.5 is thus consistent with the spectrum, although another significant avoided

crossing in the spectrum suggests that tunneling might also be visible in a very narrow region
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around α = 8. The experimental tunneling stops around α = 12.5, where the spectrum has

become quite complicated and the tunneling doublet can no longer be identified.

The tunneling rates from the calculated spectra here are in good agreement with the

observed rates in Figs. 6.18 and 6.22. For example, the two calculated tunneling rates for α = 10

and k̄ = 2.08 are 3.0 kHz and 2.3 kHz, and the calculated tunneling rate for α = 11 and k̄ = 1.04

is 4.0 kHz, all of which match the observed tunneling rates reasonably well. However, it should
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Figure 6.23: Calculated quasienergy spectrum for k̄ = 2.077, corresponding to a 20 µs modula-

tion period. Quasienergies that correspond to states with large momentum (that do not interact

with the states shown in this range of α) are suppressed, and the quasienergies shown are for

the symmetric momentum ladder (zero quasimomentum). The quasienergies for even-parity

Floquet states are shown in green, while the odd-parity states are shown in blue. The even (or-

ange) and odd (red) states with maximal overlap with the outer stable islands are shown, up to

the point where the islands bifurcate, as described in the text. The avoided-crossing behavior

of the tunneling states is apparent over a broad range of α, where two chaotic states have a clear

influence on the tunneling-doublet splitting.



6.4 Chaos-Assisted Tunneling 235

be noted that while these spectra provide a useful basis for understanding the data, an interpre-

tation based solely on these spectra would most likely be too simplistic to be very useful. An

accurate model would at minimum need to take into account the excitation of multiple Floquet

states by the initial condition, the range of quasimomenta populated after the Raman velocity

selection (as we have done in Fig. 6.10), and the averaging over a range of α due to the transverse

profile of the optical-lattice beam.
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Figure 6.24: Calculated quasienergy spectrum for k̄ = 1.039, corresponding to a 10 µs modula-

tion period. Quasienergies that correspond to states with large momentum (that do not interact

with the states shown in this range of α) are suppressed, and the quasienergies shown are for

the symmetric momentum ladder (zero quasimomentum). The quasienergies for even-parity

Floquet states are shown in green, while the odd-parity states are shown in blue. The even

(orange) and odd (red) states with maximal overlap with the outer stable islands are shown, up

to the point where the islands bifurcate, as described in the text. Several avoided crossings of

the tunneling doublet with chaotic states are apparent, although the splitting only becomes very

large around α = 10.
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6.4.5 High Temporal Resolution Measurements

All of the data so far in this chapter have been sampled only at a particular phase of the peri-

odic driving, corresponding to integer times in the Hamiltonian (6.11). We will now study the

dynamics on a much finer time scale, which will reveal additional interesting aspects of the tun-

neling dynamics. Figs. 6.25 and 6.26 show the tunneling dynamics for k̄ = 2.08 (for two different

values of α), and Fig. 6.27 shows the tunneling dynamics for k̄ = 1.04; in all three figures, the

momentum distribution was sampled 10 times per modulation period, and the duration of the

measurement covers approximately one full period of the amplitude modulation. Besides the

island-tunneling process, which is visible as the slowest oscillation, there are two other oscilla-

tory motions that are common to the three plots. The more obvious of these features appears
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Figure 6.25: Experimental momentum-distribution evolution of chaos-assisted tunneling for

k̄ = 2.08 (T = 20 µs) and α = 7.7. The distribution was sampled every 2 µs out to 400 µs, cov-
ering the first full tunneling oscillation. The classical oscillations (with the same period as the

modulation period) are evident, as well as more complicated oscillations into the intermediate

chaotic/stable region near p = 0. The phase space (see Appendix C) is characterized by the two

(symmetry-related) tunneling islands as well as a doublet of stable islands near p = 0. These

distributions were averaged over 10 iterations of the experiment.



6.4 Chaos-Assisted Tunneling 237

as a fast oscillation of the initial peak, with the same period as the modulation of the potential.

As the atoms tunnel to the other island, the tunneled peak oscillates in a complementary fash-

ion. This motion can be understood in terms of the classical phase-space dynamics. A particular

phase space for this system assumes a particular sampling phase for the dynamics; for the phase

spaces in Appendix C, the sampling phase is the same as that used for the previous data in this

chapter. To understand the present phenomenon, though, it is necessary to examine the phase

space as the sampling phase varies, as illustrated in Fig. 6.28. Because of the periodic time de-

pendence of the potential, the time parameter acts as a third dimension in phase space. Thus the

islands of stability are “flux tubes” that confine classical trajectories in the higher-dimensional

phase space [Averbukh95], and the islands that appear in the phase plots (Poincaré sections)

are cross sections of the flux tubes. As time varies continuously, then, the islands move in oppo-
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Figure 6.26: Experimental momentum-distribution evolution of chaos-assisted tunneling for k̄ =
2.08 (T = 20 µs) and α = 11.2. The distribution was sampled every 2 µs out to 400 µs, covering
the first full tunneling oscillation. The conditions are otherwise similar to those in Fig. 6.25; the

oscillations in the chaotic region occur in different locations, compared to the previous case. The

phase space (see Appendix C) is characterized by the two (symmetry-related) tunneling islands

with only small remnants of the island near p = 0. These distributions were averaged over 10
iterations of the experiment.
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site directions in phase space according to their mean momenta. Additionally, the islands move

in the momentum direction, becoming furthest apart in momentum for integer sampling times

and closest together for half-integer times. This oscillation is only significant for relatively large

values of α (away from the near-integrable regime), because of the mutual repulsion of the three

primary resonances in phase space. Thus, the fast oscillations of the experimental momentum

distributions can be attributed to the motion of the classical phase-space islands.

The second oscillatory feature is the more relevant effect for demonstrating chaos-

assisted tunneling. This oscillation is slower than the classical oscillation but also is substantially

faster than the tunneling oscillation. It appears as an occasional enhancement of probability in

the (predominantly) chaotic region between the two islands. This effect is particularly dramatic
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Figure 6.27: Experimental momentum-distribution evolution of chaos-assisted tunneling for

k̄ = 1.04 (T = 10 µs) and α = 10.5. The distribution was sampled every 1 µs out to 200 µs,
covering the first full tunneling oscillation. The oscillations in the chaotic region here are more

difficult to see than in Figs. 6.25 and 6.26, because of the smaller signal-to-noise ratio for these

experimental conditions (the horizontal stripes are artifacts of the CCD camera). The phase

space (see Appendix C) is characterized by the two (symmetry-related) tunneling islands with

only small remnants of the island near p = 0. These distributions were averaged over 10 itera-

tions of the experiment.
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in the case of α = 7.7 and k̄ = 2.08 (Fig. 6.25). Here, the first part of the tunneling transport

takes place in (at least) two steps through the chaotic sea, with the first chunk of probability

crossing during the third period of the potential and the second crossing during the fifth and

sixth periods of the potential. The population in the chaotic region is also enhanced at the time

of maximum tunneling, where the population in the islands appears to jump in the center region

for a short time (during the tenth modulation period). Similar behavior is evident for α = 11.2

and k̄ = 2.08 (Fig. 6.26); in this case, this third oscillation is not as pronounced, but is still

present. The details of this oscillation in the chaotic region are also slightly different than in the

previous case. This is especially true at the moment of maximum tunneling, where the atoms

are mostly in the two islands (unlike the case before, where the atoms were mostly in the chaotic

region), but the chaotic region is populated during the modulation periods just before and af-

ter this time. In the case of α = 10.5 and k̄ = 1.04 (Fig. 6.27), this oscillation is less visible

because of the poorer signal/noise ratio (notice that the atoms are spread over a much larger

region in momentum for this value of k̄, resulting in an effectively smaller signal). Nonetheless,

the tunneling again proceeds in chunks, with the transport visible as faint ridges crossing the

chaotic region, especially near the ends of the first, second, fourth, and fifth modulation periods.

The tunneling here in some sense resembles a Landau-Zener crossing [Zener32], because the

population crosses between the islands at the times of closest approach.

This appearance of probability in the chaotic region during the tunneling is precisely

the behavior expected from the picture of chaos-assisted tunneling of [Tomsovic94; Tomsovic01]

that we mentioned above, where tunneling occurs as parts of the wave packet break away from

the initially populated island, transport through the chaotic sea, and then reassemble in the

symmetric destination island. We also recall from the analysis of the three-level model (6.15)

of chaos-assisted tunneling that near the center of the avoided crossing, the tunneling rate is

given by the splitting(s) between the odd-parity regular state taken pairwise with each of the

two even-parity (regular/chaotic hybrid) states, which is of the order β/2. On the other hand, it

is the beating between the two hybrid states that determines the appearance of population in

the chaotic region, and this beating occurs at a rate of order β. Thus, we expect the oscillation of
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population to be substantially faster than the tunneling oscillation. The oscillations observed in

the experiment do not appear to occur with a single frequency, so it may be necessary to include

couplings to other chaotic states in order to account more accurately for this phenomenon.

6.4.6 Transport in the Strongly Coupled Regime

For even larger α than we have considered so far, the two symmetry-related islands of stability

disappear, and the quantum transport undergoes a transition to qualitatively different behavior

than the above tunneling. This strongly coupled behavior is illustrated in Figs. 6.29 and 6.30,

where the momentum-distribution evolution is shown (sampled on a fine time scale) for two

large values of α. For α = 17.0 (Fig. 6.29), the three primary resonances have disappeared,

leaving a chaotic region with only very small stable structures, while for α = 18.9 (Fig. 6.30),
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Figure 6.29: Experimental momentum-distribution evolution of chaos-assisted tunneling for

k̄ = 2.08 (T = 20 µs) and α = 17.0. The distribution was sampled every 2 µs out to 400 µs.
The three primary islands of stability have dissolved into the chaotic region in the classical phase

space for this value of α (see Appendix C). The experimental momentum distributions show er-

ratic oscillations in time. These distributions were averaged over 10 iterations of the experiment.
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there is a small island at the center of the phase space (see Appendix C). The experimental

measurement shows erratic oscillations of the momentum distributions on a faster time scale

than the tunneling observed above.

We can also understand this behavior qualitatively in terms of the Floquet states of the

system. For very small α, the Floquet spectrum consists of nearly degenerate doublets associated

with KAM tori, and as α increases the doublets break apart as their associated invariant structures

become unstable [Utermann94; Kohler98]. In the regime that we consider here, where the

stable structures have disappeared, the splittings are on the order of the mean level spacing

[Kohler98] due to level repulsion of the states in the chaotic region [Haake01]. This behavior

of the splittings is apparent in the spectra in Figs. 6.23 and 6.24. The Floquet states are no

longer well localized in this regime, and thus the initial condition excites several states. The

observed behavior is the result of complicated beating between the various populated states,
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Figure 6.30: Experimental momentum-distribution evolution of chaos-assisted tunneling for k̄ =
2.08 (T = 20 µs) and α = 18.9. The distribution was sampled every 1 µs out to 200 µs. The

two outer islands of stability are not present in the chaotic region in the classical phase space

for this value of α (see Appendix C). The experimental momentum distributions show erratic

oscillations in time. These distributions were averaged over 5 iterations of the experiment.
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and we expect a time dependence that is faster than the tunneling due to the relatively large

splittings involved.

6.5 Noise Effects on Tunneling

The tunneling that we have described here is obviously an effect of quantum coherence, and

tunneling in classically chaotic systems is expected to be suppressed by dissipation [Grobe87;

Kohler98], measurement [Sanders89], and noise [Grossmann93]. Here we consider the effects

of a noisy perturbation of the optical-lattice intensity, so that the atomic center-of-mass Hamil-

tonian becomes

H =
p2

2
− 2α[1 + ς(t)] cos2(πt) cos(x) , (6.22)
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Figure 6.31: Illustration of amplitude noise applied to the optical lattice intensity, as measured

by a fast photodiode. The end of the SPASM state-preparation sequence is visible at the begin-

ning of the traces, where the lattice is ramped up and then remains at a high level for several

µs after the lattice phase is shifted. The sinusoidal modulations begin immediately after the

state preparation, and both the zero (dashed line) and 15.7% (solid line) rms deviation cases are

shown here. The noise effects are most pronounced when the lattice is at the highest average

intensity because the noise deviation is always proportional to the local average intensity. These

traces correspond to the experimental settings for k̄ = 1.04, where the modulation period is 10
µs, and the noise is filtered with a 1 MHz cutoff frequency.
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where ς(t) is a randomly fluctuating quantity with a probability distribution peaked at and sym-

metric about zero. This noise signal was generated digitally by picking normally distributed

random deviates with a 10 MHz sampling rate. The noise was then bandwidth-limited by a digi-

tal Chebyshev low-pass filter (see Section 6.5.1) before being applied to the AOM control signal.

The cutoff frequency (0.5 MHz for the k̄ = 2.08, 20 µs modulation period data, and 1 MHz for

the k̄ = 1.04, 10 µs modulation period data) was selected to be well within the 10 MHz modu-

lation response of the AOM driver and to make the noise spectrum the same in scaled units for

different modulation periods. The rms noise levels 〈ς2(t)〉1/2 that we quote correspond to the

noise levels after the low-pass filter. Because the instantaneous noise level is proportional to the

mean intensity, truncation effects due to noise deviations falling outside the dynamic range of

the laser were rare except in the largest noise case that we consider here (62% rms). An example

of the optical lattice intensity for one particular realization of the noise is illustrated in Fig. 6.31.

The response of the tunneling oscillations to the noise is illustrated in Fig. 6.32 for
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Figure 6.32: Effects of applied amplitude noise on the tunneling oscillations for α = 11.2 and

k̄ = 2.08. The rms noise levels are 0% (circles), 15.7% (squares), 31% (diamonds), and 62%
(triangles). The tunneling is only completely suppressed at the 62% level, and thus is substan-

tially less sensitive than in the k̄ = 1.04 case in Fig. 6.33. The data were averaged over 10
realizations of noise, and were sampled every 2 modulation periods.
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k̄ = 2.08 and 6.33 for k̄ = 1.04 (α = 11.2 in both cases). As one might expect, the oscillations

are destroyed as the noise level increases, causing damping of the oscillations on progressively

shorter time scales. At the largest levels of noise, classical-like behavior (with noise) is recov-

ered, in that the tunneling oscillations are suppressed. The noise also has the “direct” effect of

causing relaxation to p = 0, because the noise permits transitions, both quantum and classical,

out of the initial island of stability and into the chaotic sea. The more interesting feature of

this data, though, is that because the value of α is fixed between the two measurements and

the tunneling periods are approximately the same (in scaled units), we can compare the sensi-

tivity of the system to the noise for two different values of k̄. From the data we see that the

tunneling oscillations are suppressed at a much lower level of noise for the k̄ = 1.04 case than

in the k̄ = 2.08 case (31% vs. 62% rms). Recalling that k̄ is the dimensionless Planck constant

in scaled units, this comparison indicates that the tunneling in this system is more sensitive to

decoherence as the system moves towards the classical limit (i.e., to a larger action scale com-
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Figure 6.33: Effects of applied amplitude noise on the tunneling oscillations for α = 11.2 and

k̄ = 1.04. The rms noise levels are 0% (circles), 7.9% (squares), 15.7% (diamonds), and 31%
(triangles). The tunneling is completely suppressed at the 31% level, and thus is more sensitive

than in the k̄ = 2.08 case in Fig. 6.32. The data were averaged over 10 realizations of noise, and

were sampled every 2 modulation periods.
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pared to �). This behavior is consistent with theoretical expectations, because for smaller k̄,

the phase-space structure in chaotic systems saturates on a smaller scale [Zurek01], thus being

more easily influenced by decoherence (which causes diffusion in phase space). Related exper-

imental results have demonstrated that Schrödinger-cat superposition states in the phase of a

cavity field [Brune96], in an atom interferometer [Chapman95; Kokorowski01], and in an ion

trap [Turchette00; Myatt00] are more sensitive to decoherence when the separation of the com-

ponents of the state increases (i.e., as the spacing of the interference fringes decreases). The

present experimental results are of a fundamentally different nature, though: while these other

experiments study the decoherence of a superposition state produced by some state-preparation

method, the interferences in the tunneling here are generated dynamically in this nonlinear sys-

tem. It is also interesting to notice that since the applied noise here leads to a fluctuating force

and thus to diffusion of the atomic momenta, this form of noise mimics a continuous measure-

ment of the atomic positions [Dyrting96; Bhattacharya01]. Thus, we might expect that the

system may be more sensitive to noise that mimics a measurement of the atomic momentum,

which would cause diffusion of the atomic position, rather than the momentum.

6.5.1 Chebyshev Filter Response

To more completely characterize the noise used in the experiment, we give a description of the

filter applied to the noise before it was used to control the optical-lattice intensity. The low-pass

Chebyshev filter is specified in terms of three parameters: the cutoff frequency ωc, the orderN ,

and the passband ripple parameter ε. The frequency response of this filter is specified by the

locations of the N poles in the complex s-plane,

sk = − sinh(v0) cos
(
kπ

2N

)
− i cosh(v0) sin

(
kπ

2N

)
, (6.23)

where

v0 =
sinh−1(1/ε)

N
, (6.24)
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for k = (1−N), (3−N), . . . , (N +1) [Parks87]. Thus the complex frequency-transfer function

can be written as

F (s) = η
∏
k

1
s− sk

, (6.25)

where s = −iω/ωc , and η is a normalization factor. The (normalized) squared modulus of the

frequency-response function is then [Parks87]

|F (s)|2 =
1

1 + ε2C2
N(ω/ωc)

, (6.26)

where

CN(ω) = cos(N cos−1(ω)) (6.27)

is the N th-order Chebyshev polynomial. Thus, the normalization factor can be written as

η = (
∏

k sk)/
√

1 + ε2 cos2(Nπ/2). The passband ripple is also commonly specified in terms of

another parameter a, which is expressed in terms of ε as

a = 10 log(1 + ε2) , (6.28)

if a is quoted in (positive) dB.
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Figure 6.34: Plot of the frequency (power) response function |F |2 of the digital Chebyshev filter

used in the experiment, with order N = 4 and 0.1 dB passband ripple.
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In the experiment, a white noise series (i.e., a series of independent, normally dis-

tributed, random deviates) was generated at the 10 MHz sampling rate of the Agilent 33250A

waveform synthesizer that controlled the 1D optical lattice intensity. To avoid unattainably large

deviations, the Gaussian distribution of these deviates was truncated beyond three standard de-

viations. The waveform was then filtered using the built-in function in LabView. For the k̄ = 1

(10 µs modulation period) case, the 1 MHz cutoff frequency resulted in an effective reduction

of the rms deviation of the waveform by a factor of about 0.4965. To produce equivalent noise

levels in the k̄ = 2 (20 µs modulation period) case, where the cutoff frequency was 500 kHz, the

noise level was first multiplied by
√

2, thus compensating for the different ratio of the sampling

frequency to the cutoff frequency.


