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5.1 Overview

In this chapter we discuss several modifications to the experimental apparatus described in

Chapter 3. These improvements were necessary to prepare localized atomic wave packets in

phase space for the experiments in Chapter 6. The first step towards such localized initial

states is further cooling of the atoms beyond what is possible in a typical MOT. We accom-

plished this additional cooling in a three-dimensional, far-detuned optical lattice, as we discuss

in Section 5.2. Further velocity selection well below the recoil limit was accomplished using

two-photon, stimulated Raman transitions. We will examine the theory of stimulated Raman

transitions as well as their experimental implementation in Section 5.3. It was also necessary

to have control over the spatial phase of the optical lattice, so that the wave packet could be

shifted to various initial locations in phase space. This spatial control was accomplished through

an electro-optic phase modulator placed before the standing-wave retroreflector, as described

in Section 5.4. Finally, we trace through the entire state-preparation sequence, using all these

atom-optics tools, in Section 5.5, and we discuss the calibration of the optical-lattice potential

in the modified setup in Section 5.6.

5.2 Cooling in a Three-Dimensional Optical Lattice

Using the standard techniques of cooling and trapping in a MOT, as described in Chapter 3, we

were limited to temperatures on the order of 10 µK for the initial conditions of the experiment.

It is desirable, however, to have much lower temperatures for the initial conditions, especially

looking towards experiments with minimum-uncertainty wave packets in phase space. Although

it has been shown that temperatures below 3 µK can be achieved in cesium using a standard

six-beam MOT [Salomon90], our MOT temperatures were substantially higher due to residual

magnetic fields from eddy currents in the stainless steel vacuum chamber after the field coils

were switched off. One successful approach to achieving additional cooling beyond that of a

standard MOT is cooling in a three-dimensional optical lattice. Several methods for cooling in

three-dimensional optical lattices have been demonstrated [Kastberg95; Hamann98; Vuletić98;

Kerman00], but the method implemented here was based on the setup developed by the group
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of David Weiss [Winoto99a; Winoto99b; DePue99; Wolf00; Han01].

The 3D optical lattice was formed by five beams, as illustrated in Fig. 5.1. Three of

the beams were in the horizontal plane; two of these beams counterpropagate, and the third is

perpendicular to the other two. These beams formed a two-dimensional interference pattern,

consisting of a lattice of spots with maximum intensity. This pattern thus forms confining poten-

tial wells for red-detuned light, but not for blue-detuned light, where the intensity maxima form

scattering barriers for the atoms, resembling the Lorentz gas. The use of three beams for this

two-dimensional lattice is important, in that using the minimum number of beams to determine

a lattice ensures that the structure of the interference pattern will be stable to phase perturba-

tions [Grynberg93]. In the original implementation of this lattice [Winoto99b; DePue99], four

beams (in two counterpropagating pairs) were used to form the horizontal part of the lattice. Be-

cause the interference pattern could change its periodicity by a factor of two as the phase of one

of the beams varied, the authors in that experiment implemented interferometric stabilization

of the beam phases [Han01]. In the realization here, we simply omitted one of the four beams

to gain relatively easy stability at the expense of lattice intensity. The omission of one of the

Figure 5.1: Configuration of the beams forming the three-dimensional lattice for additional cool-

ing of the atoms. Five total beams form the lattice, and the directions of the linear polarizations

of each beam are indicated. Each of the beams is orthogonal to or counterpropagating with re-

spect to the other beams. The two vertical beams are decoupled from the three horizontal beams

by an 80MHz frequency shift. (Graphics rendered by W. H. Oskay.)
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beams was important in allowing long-term storage of the atoms in the lattice, as we describe

below, as well as repeatable atomic temperatures.

The other two beams in the 3D lattice counterpropagated in the vertical direction,

and they were approximately perpendicular to the three horizontal beams. These beams were

offset in frequency by 80MHz with respect to the horizontal beams. In this arrangement, the

interferences with the horizontal lattice oscillate on a time scale that is very fast compared to

atomic motion time scales, and thus it is appropriate to regard the vertical beams as decoupled

from the horizontal beams in terms of analyzing the interference pattern. Hence, the vertical

beams produced a normal 1D standing-wave lattice, which confined the atoms vertically, and the

three horizontal beams confined the atoms in the other two dimensions.

Cooling in 3D lattices proceeds by applying the usual MOT beams to the atoms in the

lattice. There are several mechanisms by which lattice cooling achieves much lower tempera-

tures than a standardMOT. The first mechanism is that of “adiabatic cooling” [Jessen96], where

the application of the lattice acts as an effective refrigerator cycle for cooling the atoms. When

the atoms are loaded into the lattice from the initial MOT, they are heated by the increasing po-

tential in order to gain local confinement in the lattice wells. Laser cooling by the MOT beams

proceeds as usual, cooling the atoms from the heated temperature back down to normal MOT

temperatures. When the lattice is then adiabatically shut off (together with the MOT beams),

the temperature is further lowered at the expense of local confinement, in which we are not

necessarily interested. An important feature of the lattice configuration implemented here is

that because all the light is linearly polarized and far-detuned, the magnetic (Zeeman) sublevels

all experience the same energy shift due to the light, and sub-Doppler cooling mechanisms that

rely on such degenerate level structure (polarization-gradient cooling [Dalibard89]) proceed as

in the free-MOT case. This mechanism was especially important for the setup here, as the

atoms could be stored in the lattice until after the magnetic fields decayed, allowing for much

better polarization-gradient cooling than we could achieve in the standard MOT. It was also im-

portant to extinguish the MOT beams adiabatically, as they likewise produced an optical lattice

due to the six-beam interference. The second mechanism for better cooling in the lattice relates
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to suppression of the absorption of rescattered light in the MOT. The second-hand absorption

of photons that have already been spontaneously scattered by MOT atoms, or “radiation trap-

ping,” leads to temperature and density limitations in free-space MOTs [Sesko91; Ellinger94].

These rescattering events are particularly problematic in that they may be much more likely

to be absorbed than regular MOT photons, because their cross section for absorption is inde-

pendent of detuning due to the possibility of taking part in a two-photon stimulated scattering

event [Castin98; Wolf00]. In the festina lente regime [Castin98], however, where the photon

scattering rate (due to lattice photons, as we will mention below) is small compared to the trap

oscillation frequency (and thus the vibrational-level splitting), the recoil heating due to these

reabsorption events is suppressed [Castin98; Wolf00]. This is because most of the rescattered

photons in this regime are scattered elastically in the tight-confinement (Lamb-Dicke) limit,

and the probability of an atom changing its vibrational level by scattering such a rescattered pho-

ton is small. This suppression of rescatter heating is further enhanced by a third mechanism in

lattice cooling, where the cooling proceeds in analogy to a dark MOT [Ketterle93]. This mech-

anism obtains because the normal repumping light used in the regular MOT is extinguished

after the initial cooling phase in the lattice. Most of the atoms are thus in the dark (F = 3)

hyperfine level, and so the cooling light only affects a small fraction of the atoms at a given time.

The far-detuned lattice light provides slow repumping to the trapping transition. Thus, the life-

time for a given vibrational level is set by the scattering rate of optical-lattice light, and not the

near-resonant MOT light. Finally, cooling in the lattice has the additional benefit that atoms are

separated in individual lattice sites, and thus light-assisted collision losses and other collisional

effects are suppressed, resulting in a nearly density-independent cooling rate [Winoto99a].

For the realization here, the light was produced by the same Ti:sapphire laser that pro-

vided the 1D time-dependent interaction lattice. An 80MHz AOM picked off light for the 3D

lattice just before the similar pickoff AOM for the 1D lattice light. Another 80MHz AOM split

this beam into two parts, the first order (+80 MHz) having about 1/3 of the light, with the

remainder in the unshifted zeroth order. These two beams were spatially filtered by focusing

through 50 µm diameter pinholes. The upshifted light formed the vertical lattice beams, while
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the unshifted portion was further split in two with a half-wave plate and a polarizing beam-

splitter cube to form the horizontal beams. These three beams were all focused onto retrore-

flecting mirrors on the opposite sides of the chamber so that the beam waist w0 was 500 µm at

their intersection; one of the horizontal, retroreflected beams was blocked to form the five-beam

geometry described above. Each of the beams had approximately 90 mW of power. The lattice

had a typical detuning of 50 GHz to the red of the F = 3 −→ F ′ transition multiplet (or 40

GHz to the red of F = 4 −→ F ′), leading to an oscillation frequency in the vertical direction

of around 170 kHz (in the harmonic-oscillator approximation) and a scattering rate of around 1

kHz at beam center.

The procedure for lattice cooling began with about 5 s of loading the regular MOT from

the background vapor. The optical molasses light intensity was then lowered to 60% of the

loading value, and the detuning was increased to 37 MHz (from the 13 MHz used during the

loading phase). At the same time, the 3D lattice was turned on adiabatically to minimize the

heating of the atoms. The intensity followed the temporal profile I(t) = Imax(1 − t/τ )−2 (for

−800 µs < t < 0) [Kastberg95; DePue99], where the time constant τ was 30 µs. During this

lattice-loading phase, the anti-Helmholtz fields and repump light were both left on to encourage

rapid binding of the atoms to the 3D lattice. After a total of 22 ms in this loading phase, the

magnetic fields and repump light were extinguished, and the molasses light was raised back up

to 100% intensity. The 3D lattice was maintained at full intensity during the subsequent 298

ms storage time, but the molasses light was ramped linearly down to 77% intensity by the end

of this period. This long storage time was sufficient to allow the magnetic fields to decay mostly

away (to 70mG or better, when compensated properly by the Helmholtz coils), although a slowly

varying magnetic field was still detectable using the stimulated Raman spectroscopy described

below. Then the MOT and 3D lattice beams were ramped down adiabatically according to a

similar profile, I(t) = I0(1 + t/τ )−2 (with the same time constant), over 800 µs. The molasses

light began its ramping down about 20 µs before the 3D lattice beams, giving the optimum final

temperature.

This lattice-cooling procedure led to an atomic population in the F = 3 level with a 1D
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temperature (in the horizontal direction) of 400 nK, or σp/2�kL = 0.7. Between 50% and 90% of

the atoms remained trapped in the lattice during the cooling cycle, depending sensitively on how

well the lattice was aligned. The vertical temperature of 500 nK (σp/2�kL = 0.8) was somewhat

higher; the temperature could be mademore isotropic by changing the relative beam powers, but

at the expense of the horizontal temperature, which was the only important temperature for the

experiments here. The lattice worked well over detunings of 25-70 GHz (from F = 3 −→ F ′);

for closer detunings the final temperature began to rise, and at larger detunings, the fraction

retained in the lattice dropped off.

For some experiments, it was necessary to prepare the atoms in the F = 4 hyperfine

level. This could be conveniently achieved by pulsing on the repumping light for 100 µs af-

ter the lattice and molasses fields were extinguished, at the expense of temperature (the final

temperature was typically 700 nK after repumping). To implement stimulated Raman velocity

selection, as we discuss in the next section, further optical pumping to the F = 4, mF = 0

Zeeman sublevel was necessary, as we discuss in Section 5.3.5.

5.3 Stimulated Raman Velocity Selection

Now we consider the implementation of two-photon, stimulated Raman transitions in cesium

for subrecoil (i.e., smaller than the single-photon momentum) velocity selection. After giving a

general overview of the theory behind stimulated Raman transitions and velocity selection, we

will give the details of our implementation as well as a discussion of optical pumping and internal

state selection necessary for a clean velocity-selection method.

5.3.1 Stimulated Raman Transitions: General Theory

We consider the atomic energy level structure shown in Fig. 5.2, where two ground states |g1,2〉

are coupled to a manifold of excited states |en〉 by two optical fields. Our goal is to show that

under suitable conditions, the atomic population can be driven between the ground states as

in a two-level system. We restrict our attention to the case where the fields propagate along a
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common axis. In the counterpropagating case, the combined optical field has the form

E(x, t) = ε̂1E01 cos(k1x− ωL1t) + ε̂2E02 cos(k2x+ ωL2t)

= E(+)(x, t) + E(−)(x, t) ,

(5.1)

where E(±)(x, t) are the positive and negative rotating components of the field, given by

E(±)
1 (x, t) =

1
2

(
ε̂1E01e

±ik1xe∓iωL1t + ε̂2E02e
∓ik2xe∓iωL2t

)
, (5.2)

and ε̂1,2 are the unit polarization vectors of the two fields. The results that we will derive also

apply to the copropagating case as well upon the substitution k2 → −k2.

The free atomic Hamiltonian can then be written

HA =
p2

2m
+ �ωg1 |g1〉〈g1|+ �ωg2 |g2〉〈g2|+

∑
n

�ωen |en〉〈en| , (5.3)

and the atom-field interaction Hamiltonian is

HAF = −d(+) ·E(−) − d(−) · E(+) , (5.4)

where we havemade the rotating-wave approximation, we have assumed that ω21 := ωg2−ωg1 �

ωegj
:= max{ωen}−ωgj , and we have in mind that the |en〉 are nearly degenerate. Additionally,
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Figure 5.2: Energy level diagram for stimulated Raman transitions. Each ground level |gj〉 is
coupled to the excited-state manifold |en〉 via two laser fields, which are tuned so that their
detunings from the excited-state manifold are nearly the same.
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we have decomposed the dipole operator d into its positive- and negative-rotating components,

d = d(+) + d(−)

=
∑

n

(
a1n〈en|d|g1〉 + a2n〈en|d|g2〉

)
+

∑
n

(
a†1n〈en|d|g1〉 + a†2n〈en |d|g2〉

)
,

(5.5)

where ajn := |gj〉〈en| is an annihilation operator. Substituting (5.5) into (5.4), we find

HAF = −
∑

n

1
2
〈en|ε̂1 · d|g1〉E01

(
a1ne

ik1xe−iωL1t + a†1ne
−ik1xeiωL1t

)
−

∑
n

1
2
〈en|ε̂2 · d|g2〉E02

(
a1ne

−ik2xe−iωL2t + a†2ne
ik2xeiωL2t

)
.

(5.6)

In writing this expression, we have assumed the detunings ∆Lj := ωLj − ωegj
are nearly equal;

hence, to make this problem more tractable, we assume that the field Ej couples only |gj〉 to

the |en〉. After solving this problem we will treat the cross-couplings as a perturbation to our

solutions. If we define the Rabi frequency

Ωjkn :=
−〈en |ε̂k · d|gj〉E0k

�
, (5.7)

which describes strength of the coupling from level |gj〉 through field Ek to level |en〉, we arrive

at

HAF =
∑
n

�Ω11n

2
(
a1ne

ik1xe−iωL1t + a†1ne
−ik1xeiωL1t

)
+

∑
n

�Ω22n

2
(
a1ne

−ik2xe−iωL2t + a†2ne
ik2xeiωL2t

) (5.8)

as a slightly more compact form for the interaction Hamiltonian.

Now, before examining the equations of motion, we transform the ground states into

the rotating frame of the laser field, as in Chapter 2:

|g̃j〉 := e−iωLjt|gj〉

Ẽ
(±)
k := e±iωLktE

(±)
k .

(5.9)

Also, for concreteness, we will take max{ωen} = 0. Then the rotating-frame, free-atom Hamil-

tonian is

H̃A =
p2

2m
+ �∆L1|g̃1〉〈g̃1|+ �∆L2|g̃2〉〈g̃2|+

∑
n

�δen |en〉〈en| , (5.10)
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where δen := ωen −max{ωen} (i.e., δen ≤ 0). The interaction Hamiltonian in the rotating frame

is

H̃AF = −d̃(+) · Ẽ(−) − d̃(−) · Ẽ(+)

=
∑
n

�Ω11n

2
(
ã1ne

ik1x + ã†1ne
−ik1x

)
+

∑
n

�Ω22n

2
(
ã1ne

−ik2x + ã†2ne
ik2x

)
,

(5.11)

where the annihilation operator ãjn is defined in the same way as ajn, but with |gj〉 replaced by

|g̃j〉.

Turning to the equations of motion, we will manifestly neglect spontaneous emission,

since ∆Lj � Γ, where Γ is the decay rate of |en〉, by using a Schrödinger-equation description

of the atomic evolution. Then we have

i�∂t|ψ〉 = (H̃A + H̃AF)|ψ〉 , (5.12)

where the state vector can be factored into external and internal components as

|ψ〉 = |ψg1〉|g̃1〉+ |ψg2〉|g̃2〉 +
∑

n

|ψen〉|en〉 . (5.13)

Then if ψα(x, t) := 〈x|ψα〉, we obtain the equations of motion

i�∂tψen =
p2

2m
ψen +

�Ω11n

2
e−ik1xψg1 +

�Ω22n

2
eik2xψg2 + �(δen −∆L)ψen

i�∂tψg1 =
p2

2m
ψg1 +

∑
n

�Ω11n

2
eik1xψen + �(∆L1 −∆L)ψg1

i�∂tψg2 =
p2

2m
ψg2 +

∑
n

�Ω22n

2
e−ik2xψen + �(∆L2 −∆L)ψg2 ,

(5.14)

where we have boosted all energies by −�∆L, with ∆L := (∆L1 + ∆L2)/2 (i.e., we applied an

overall phase of ei∆Lt to the state vector). Since we assume that |δen | � |∆L| and |∆L2−∆L1| �

|∆L|, it is clear that the ψen carry the fast time dependence at frequencies of order |∆L| � Γ.

We are interested in motion on timescales slow compared to 1/Γ, and the fast oscillations are

damped by coupling to the vacuum on timescales of 1/Γ, so we can adiabatically eliminate the

ψen by making the approximation that they damp to equilibrium instantaneously (∂tψen = 0).

Also, we use p2/2m� �|∆L|, with the result,

ψen =
Ω11n

2(∆L − δen)
e−ik1xψg1 +

Ω22n

2(∆L − δen)
eik2xψg2 . (5.15)
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Notice that in deriving this relation, it was important to choose the proper energy shift −�∆L to

minimize the natural rotation of the states that remain after the adiabatic elimination; indeed,

if the resonance condition that we will derive is satisfied, the two ground states have no natural

oscillatory time dependence. This procedure would be much more clear in a density-matrix

treatment (as in Section 2.4.1), where the oscillating coherences would be eliminated, but this

description is cumbersome due to the number of energy levels in the problem. Using this relation

in the remaining equations of motion, we obtain two coupled equations of motion for the ground

states,

i�∂tψg1 =
p2

2m
ψg1 +

[
�∆L1 + �ωAC1

]
ψg1 +

�ΩR

2
ei(k1+k2)xψg2

i�∂tψg2 =
p2

2m
ψg2 +

[
�∆L2 + �ωAC2

]
ψg2 +

�ΩR

2
e−i(k1+k2)xψg1 ,

(5.16)

where we have removed the energy shift of −�∆L. These equations are formally equivalent to

the equations of motion for a two level atom, with Rabi frequency

ΩR :=
∑

n

Ω11nΩ22n

2(∆L − δen)
(5.17)

and Stark shifts

ωACj :=
∑
n

Ω2
jjn

4(∆L − δen)
. (5.18)

These equations of motion are just the equations generated by the effective RamanHamiltonian

HR =
p2

2m
+ �(∆L1 + ωAC1)|g̃1〉〈g̃1|+ �(∆L2 + ωAC2)|g̃2〉〈g̃2|

+ �ΩR

(
aRe

i(k1+k2)x + a†Re
−i(k1+k2)x

)
,

(5.19)

where the Raman annihilation operator is defined as aR := |g1〉〈g2|. Noting that the oper-

ator exp(−ikx) is a momentum-shift operator, so that exp(−ikx)|p〉 = |p − �k〉 (and thus

exp(−ikx)ψ(p) = ψ(p + �k), where ψ(p) := 〈p|ψ〉), it is clear from the form of the effec-

tive RamanHamiltonian that a transition from |g2〉 to |g1〉 is accompanied by a kick to the left of

two photon-recoil momenta, and the reverse transition is accompanied by a kick to the right of

two photon recoils. We can write out the coupled equations of motion due to the Hamiltonian
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(5.19) more explicitly as

i�∂tψg1(p) =
[
p2

2m
+ �∆L1 + �ωAC1

]
ψg1(p) +

�ΩR

2
ψg2(p + 2�kL)

i�∂tψg2(p+ 2�kL) =
[
(p + 2�kL)2

2m
+ �∆L2 + �ωAC2

]
ψg2(p+ 2�kL) +

�ΩR

2
ψg1(p) ,

(5.20)

where 2kL := k1 + k2 . The resonance condition for this transition |p〉|g1〉 −→ |p+2�kL〉|g2〉 is[
(p+ �kL)2

2m�
+∆L2 + ωAC2

]
−

[
p2

2m�
+∆L1 + ωAC1

]
= 0 , (5.21)

which can be rewritten as

4ωr

(
p + �kL

�kL

)
+ (∆L2 −∆L1) + (ωAC2 − ωAC1) = 0 . (5.22)

Here, we have defined the recoil frequency as before by ωr := �k2
L/2m = 2π · 2.0663 kHz for

the cesium D2 transition. The first term is just the Doppler shift of the two optical fields due

to motion at the average of the upper and lower state momenta. In the copropagating case, this

term is typically negligible.

Finally, we account for the effects of the cross-couplings that we previously ignored.

The lifetimes of the two ground states are in practice extremely long, so that the line width of

the Raman transition is quite narrow, being limited only by the finite interaction time. Since it

is assumed that the Raman resonance condition (5.21) is approximately true, the Raman cross-

coupling is much further away from resonance than the intended coupling (typically several

orders of magnitude in cesium), so this extra Raman coupling can be neglected in a secondary

rotating-wave approximation. However, the cross-couplings can induce additional ac Stark shifts

of the ground levels. So, we simply modify (5.18) to include these extra shifts:

ωAC1 :=
∑

n

Ω2
11n

4(∆L − δen)
+

∑
n

Ω2
12n

4(∆L − δen − ω21)

ωAC2 :=
∑

n

Ω2
22n

4(∆L − δen)
+

∑
n

Ω2
21n

4(∆L − δen + ω21)
.

(5.23)

These additional Stark shifts may not in general be negligible compared to the original Stark

shifts.
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We can also obtain an estimate of the spontaneous emission rate by using (5.15) to write

the total excited state population in terms of the density matrix elements:

Rsc = Γ
∑
n

ρenen

=
∑

n

ΓΩ2
11n

4(∆L − δen)2
ρg1g1 +

∑
n

ΓΩ2
22n

4(∆L − δen)2
ρg2g2

+
∑
n

ΓΩ11nΩ22n

4(∆L − δen)2
e−i2kLxρg1g2 +

∑
n

ΓΩ11nΩ22n

4(∆L − δen)2
ei2kLxρg2g1 .

(5.24)

Here, ραα is the population in state |α〉, with ρg1g1 + ρg2g2 � 1, and this result assumes im-

plicitly that ∆L1 ≈ ∆L2. The second two terms represent an enhancement or suppression of

spontaneous scattering due to atomic coherences; for example, the state

|ψ〉 = η(Ω22ne
ikLx|ψg1〉 − Ω11ne

−ikLx|ψg2〉) (5.25)

(where η is the appropriate normalization factor) is dark, since Rsc vanishes for this state. How-

ever, this state is only dark if the cross-couplings can be ignored. More realistically, the scattering

rate can be modeled as an incoherent sum over all the couplings of the form (ΓΩ2/4∆2)ρgjgj ,

including other fields that are not directly involved in the Raman transition (such as the EOM

carrier field, discussed in Section 5.3.3).

5.3.2 Pulse-Shape Considerations

Since the velocity-selective Raman pulses are generally used to “tag” a subset of an atomic dis-

tribution according to their momentum, it is important to consider the impact of the temporal

pulse profile on the tagged distribution. The simplest pulse profile is the square profile, where

the light is turned on at a constant intensity for some duration. Assuming that the atoms are

all initially in the same internal atomic state, the tagging process is described by the solution of

the optical Bloch equations for the excited state population of a two-level atom with Rabi fre-

quency ΩR, Raman detuning ∆R (given by the left-hand side of Eq. (5.22)), and with all initial

population in the ground Raman state:

ρee(t) =
Ω2

R

Ω2
R +∆2

R

sin2

(
1
2

√
(Ω2

R +∆2
R) t

)
. (5.26)
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From Eq. (5.22), we see that a detuning of ∆R = 4ωr corresponds to a momentum shift of

�kL. This lineshape has wings that decay relatively slowly, with a series of locations where the

lineshape goes to zero. The locations of the zeros for an interaction time of δt is given by

∆R =

√
4n2π2

(δt)2
− Ω2

R (5.27)

for positive integer n. This relation simplifies for specific interaction times; for example, for a

“π-pulse” of duration δt = π/ΩR, the locations are at ∆R = ΩR

√
4n2 − 1, and for a π/2-pulse

of duration δt = π/(2ΩR), the locations are ∆R = ΩR

√
16n2 − 1. These zeros were important

in a previous implementation of Raman cooling [Reichel95; Reichel96], where the first zero of

the profile (5.26) was placed at zero momentum to form a dark interval where atoms would

accumulate. The square-pulse excitation lineshape is plotted in Fig. 5.3 for a π/2-pulse, a π-

pulse, and a 2π-pulse. Note that for the important case of the π-pulse, the central population

lobe is characterized by a half width at half maximum of 0.799 ·Ω.

It is also important to note that because one typically excites a range of detunings with
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Figure 5.3: Plot of Eq. (5.26), showing excited state population as a function of the detuning

from resonance, for three pulse durations: π/2-pulse, corresponding to an interaction time of
δt = π/(2ΩR), (solid line); a π-pulse, corresponding to δt = π/ΩR (dotted line); and a 2π-
pulse, for δt = 2π/ΩR (dashed line).
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a velocity-selective Raman pulse, the transferred population does not undergo simple sinusoidal

Rabi oscillations. For a square pulse, the excitation profile (5.26) must be averaged over the

atomic velocity distribution. In the limit of a broad velocity distribution, the excited population

is proportional to∫ ∞

−∞
ρee(t)d∆R =

πΩR

2
Ji0(ΩRt)

=
πΩ2

Rt

2

{
J0(ΩRt) +

π

2
[J1(ΩRt)H0(ΩRt)− J0(ΩRt)H1(ΩRt)]

}
,

(5.28)

where the Jn(x) are ordinary Bessel functions, the Hn(x) are Struve functions, and Jin(x) :=∫ x

0
Jn(x′)dx′. The population in this case still oscillates as a function of time, but with some

damping. This function is plotted in Fig. 5.4. Notice that for short times, the function (5.28)

reduces to (π/2)Ω2
Rt+O(t2), so that one can associate a nonzero transition rate, proportional to

Ω2
R (which is in turn proportional to the product of the laser intensities), as long as ΩRt � 1.

An alternative approach, based on the Blackman pulse profile, was used by the Chu

group for Raman cooling [Kasevich92a; Davidson94]. This profile, when normalized to have unit
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Figure 5.4: Plot of Eq. (5.28), showing excited state population evolution resulting from a square,

velocity-selective Raman pulse in a broad atomic velocity distribution. The location of the first

minimum is determined by the second zero of J0(x), which is at ΩRt ≈ 0.879 · 2π.
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area, can be written as

fB(t) =
1

0.42τ
[−0.5 cos(2πt/τ ) + 0.08 cos(4πt/τ ) + 0.42] , (5.29)

where τ is the duration (support) of the pulse. The Blackman profile has the property that the

tails in the Fourier spectrum are suppressed relative to the square pulse. Hence, the Raman

excitation spectrum of the Blackman pulse falls off much more sharply than the corresponding

square-pulse spectrum, as shown in Fig. 5.5. However, the implementation of Blackman pulses

in a setup where the Raman beams induce an ac Stark shift of the transition is more compli-

cated, since the Raman frequency must be chirped to match the Stark shift in order to get good

frequency resolution. (For an 800 µs, square π-pulse, the Raman transition was Stark shifted by

around−2 kHz in this setup, which is larger than the 500Hz effective half-width of the selected

momentum group.) Due to the frequency stability issues of the RF electronics discussed below,

the experiments in this dissertation used only square Raman pulses.
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Figure 5.5: Plot of the excitation profile for a Blackman pulse (solid line) and for a square pulse

(dotted line). Both pulses are π-pulses and have the same total temporal duration (and hence
the same average Rabi frequency Ω̄R).
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5.3.3 Implementation of Stimulated Raman Transitions

The basic hardware setup for implementing stimulated Raman transitions is shown in Fig. 5.6.

The Ti:sapphire laser that provided the light for the 1D and 3D optical lattices also provided

the light to drive the Raman transitions. A 40 MHz AOM, placed after the two AOMs for the

optical lattices and before the wave meter and Fabry-Perot cavity, was used to to pick off the

Raman light from the main Ti:sapphire beam line.

The method used to generate the two laser frequencies to drive cesium Raman transi-

tions is similar to the implementation in [Kasevich92b]. The first-order beam from the Raman

AOM was split into two components by a 50% beam splitter (or more precisely, a half-wave

plate with a polarizing beam-splitter cube). One of the split beams was sent through a New

Focus model 4851, 9.28 GHz electro-optic phase modulator (EOM), which put sidebands at

±9.28 GHz on the beam. The driving signal was derived from the 10 MHz output of a highly

From
Ti:sapphire

40 MHz
AOM

9.28 GHz EOM 44 MHz
AOM

44 MHz
AOM

l/4

l/4

insert mirror and beamsplitter
for copropagating mode

(AOMs have common source
at 43.684115MHz + d, and are
indepedently switchable; they
shift the light frequency in

opposite directions.
d = 0 corresponds to resonance
in the absence of Doppler or

level shifts.)

to l-meter and Fabry-Perot cavity

n , locked to n + n × 1.5 GHz - 195MHz,
where n is the (F = 4® F' = 5)

resonance frequency

TS 45

45

n = n + 40 MHz

n ,

n ± 9.28 GHz

n ± 87.36823 MHz ± 2dc

c

c

c

TS

(BS, T = 50%)

STOP

STOP

80 MHz
AOM

for 1D
interaction potential

n + 80 MHzTS

80 MHz
AOM

for 3D lattice
n + 80 MHzTS

Figure 5.6: Optical layout for implementing stimulated Raman transitions with a high-frequency

electro-optic modulator (EOM). The EOM put 9.28GHz sidebands on the carrier frequency νc,

and the counterpropagating beam was shifted up or down in frequency by one of two acousto-

optic modulators (AOMs), depending on the desired direction of the photon momentum trans-

fer. An extra mirror and beam splitter could be inserted on kinematic mounts to convert the

system to copropagating mode.
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stable and accurate EFRATOM LPRO rubidium oscillator, which was quadrupled in frequency

and then converted to 9.28 GHz by a Delphi Components, Inc. dielectric resonant oscillator

(DRO). The DRO output was amplified by a QuinStar Technology, Inc. model CPA09092535-1

solid state amplifier, which was specified to have 25 dB of gain (with 35 dBm maximum output

power) at 9.28 GHz. The amplifier output was protected by a Sierra Microwave Technology

model SMC-8010 microwave circulator, so that any back-reflections would be terminated into a

50 Ω resistive load rather than the amplifier output port. The signal was transferred to the phase

modulator through a 1 m long, Times Microwave Systems LMR-400 cable, which has low loss

at 9.28 GHz compared to standard semirigid (RG-402) coaxial wire. The EOM converted about

7% of the carrier into each of the sidebands. The beam was then spatially filtered by focusing

through a 40 µm pinhole, converted to circular polarization by a zero-order half-wave plate, and

sent into the chamber. This (collimated) beam had a waist parameter w0 of around 2 mm as it

entered the chamber.

The other beam propagated through two 44MHz tunable AOMs. These AOMswere ar-

ranged in a double-pass configuration, with one double-passing the +1 order and the other using

the −1 order. With this arrangement the output beam could be shifted by ±88MHz depending

on which AOM was switched on, with some tunability. The output of the double-pass configura-

cn

n + 9.28 GHzc

n + 87.36823 MHz + 2dc

n + 9.28 GHzc

n - 9.28 GHzc

n - 87.36823 MHz - 2dc

n - 9.28 GHzc

cn

(a) (b)

F = 3

F = 4

F = 3

F = 4

Figure 5.7: Energy-level scheme in cesium for the optical setup in Fig. 5.6. The configuration

shown in (a) is for the case when one of the double-passed AOMs shifted the light up by 87

MHz, while case (b) is for the case where the light was shifted down by 87 MHz.
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tion was also sent into the vacuum chamber after spatial filtering through a 35 µm pinhole. This

beam also had a waist parameter w0 of around 2 mm in the chamber, and was likewise circularly

polarized after passing through a zero-order half-wave plate. The two beams propagated along

nearly the same axis as the 1D lattice (with about 1◦ of horizontal angular separation), to give

velocity selectivity in the dimension of interest. The idea behind this arrangement is that the

AOM-shifted light and one of the sidebands on the other beam provide the two frequencies to

drive the Raman transition. The AOM frequency shift was important to decouple all other pairs

of light, so that the other EOM sideband and the EOM carrier had no influence on the atoms

besides a Stark shift and some additional spontaneous scattering. The shift was particularly im-

portant in decoupling the carrier, which in velocity-selective mode would form a standing wave

with the counterpropagating beam. With the frequency shift, this standing wave moved far too

quickly (∼104 photon recoils) to have any effect on the atomic motion. Since the ground-state

splitting ω21 is exactly 2π · 9.192 631 770 GHz, driving the AOMs at 43.684 115 MHz (which

induces a shift of ± 87.368 230 MHz) put the Raman transition directly on resonance in the

absence of Stark, magnetic, or Doppler shifts.

The tunable RF signal that drove the AOMs needed to be extremely stable, and thus

was derived from synthesized signal generators. In the original setup, the signal from a Fluke

6080A/AN synthesizer, operating at 150MHz, was doubled in frequency by a Mini-Circuits FK-

5 doubler. Since the synthesizer had an analog frequency-modulation (FM) input which could

change the frequency by up to ±1 MHz, the doubler effectively increased the “throw” of the

synthesizer to ±2 MHz. The analog FM input was controlled by a Stanford Research Systems

DS345 arbitrary waveform synthesizer, connected by a double-shielded coaxial cable to reduce

noise contamination on the FM signal. The doubled signal was mixed by a Mini-Circuits ZP-

3LHmixer with the output of a WaveTekmodel 2047 synthesizer, which operated at about 343.7

MHz, to obtain the difference frequency at 43.7 MHz. The mixer output was then amplified

by an IntraAction model PA-4 power amplifier and then fed into the appropriate AOM. The

synthesizers were both slaved to the Rb oscillator mentioned above for extremely good accuracy

and stability, but the analog input of the Fluke unit caused the output frequency to have long-
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term drifts (over the course of a day) at the kHz level, which is at the same level as the Fourier

width of the Raman selection pulse. Hence, this setup was not suitable for a reliable Raman

velocity selection solution, and so the Fluke unit was replaced by a Hewlett-Packard model

8662A synthesizer. The HP unit was much more stable, having drifts at the 100 Hz level over

the course of a day, but also had a much smaller FM range of±25 kHz. So, the HP unit was more

useful for Raman velocity selection, while the Fluke unit was more useful for wide-range sweeps

(e.g., while looking for Raman signals initially or beginning to null out magnetic fields). It was

also useful to have rapid control of the Raman detuning to chirp the detuning during a pulse,

which improved the quality of the spectra in coarse spectral sweeps. For the Raman velocity

selection in the state-preparation sequence described below, the FM input on the HP unit was

disabled, and the Raman detuning was set by programming the HP unit via the GPIB interface.

In this mode, where the FM input was deselected, the RF system had extremely good frequency

stability, with a drift at the level of 1 Hz/day.

This configuration allows for two distinct possibilities for driving Raman transitions.

When the two beams are counterpropagating, the Raman transitions are velocity-selective, as

we argued in the previous section. By choosing which way the double-passed beams are shifted,

one also chooses the direction of momentum that the beams impart to the atoms. This idea is

illustrated in Fig. 5.7, which shows the optical frequencies in the context of the energy levels of

cesium. When the double-passed beam is shifted up in frequency, it drives the F = 4 −→ F ′

part of the transition, while the upper sideband on the EOM beam drives the F = 3 −→ F ′

part. The lower sideband and the carrier are too far away from resonance to have a significant

effect. When the double-passed beam is shifted to the red, however, as in Fig. 5.7(b), the double-

passed beam drives the F = 3 −→ F ′ part of the Raman transition, while the lower sideband

of the EOM beam drives the F = 4 −→ F ′ part. The mutual detuning of the Raman beams

from resonance is now effectively 9 GHz larger, but the imparted momentum for a given Raman

transition is in the opposite direction. For the F = 3 −→ F = 4 Raman transition, the case of

Fig. 5.7(a) corresponds to a leftward kick in Fig. 5.6, while the case of Fig. 5.7(b) corresponds

to a rightward kick. This dual-AOM arrangement is useful for an implementation of stimulated
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Raman cooling, as we discuss briefly below, although for the experiments in this dissertation,

we only used one of the AOMs (inducing a positive frequency shift) to drive velocity-selective

transitions.

This setup could also be operated in copropagatingmode by inserting a mirror to deflect

the phase-modulated beam after the spatial filter and inserting a 50% non-polarizing cube beam

splitter to combine the two beams with the same polarization. This configuration was useful for

nulling the background magnetic fields, as these Raman transitions are much more efficient than

in the counterpropagating case (since atomsmoving at all velocities can still undergo transitions),

and the only energy shifts are Stark and Zeeman shifts. By minimizing the splittings between

the resonances due to these copropagating-mode transitions, we could null the background fields

to about 10mG, although we tolerated background fields at the 70mG level because of long-term

drifts in the field-control electronics.

5.3.4 Optical Pushing and Hyperfine State Detection

With this setup, it is possible to drive Raman transitions in cesium, but it is still necessary to

have a measurement scheme to detect the internal state populations. Beginning with cooling in

the 3D optical lattice, the atoms were cooled in the F = 3 ground hyperfine level. As discussed

above, a brief repumping pulse transferred the atoms to the F = 4 level. At this point we could

drive Raman transitions back to the F = 3 level. To detect the population transferred by the

Raman process, we turned on a beam resonant with the F = 4 −→ F ′ = 5 cycling transition

From DBR diode laser

80 MHzAOM
(tunable 60-100 MHz)

to Fabry-Perot cavity

l/4

n - 195 MHz45

n -75/+5 MHz45

for MOT/molasses light

97.5 MHzAOM
(tunable 60-100 MHz)

l/4

n44

for optical pumping
to F = 4, m = 0

n45

for pushing away
F = 4 atoms

56 MHzAOM

Figure 5.8: Optical layout for other beams needed for Raman tagging. The same laser is used to

generate light for the MOT/molasses, the optical pumping into F = 4, mF = 0, and for pushing
F = 4 atoms out of the interaction region after the tagging.
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to accelerate the F = 4 atoms to high velocity, leaving only the F = 3 atoms in the interaction

region; these atoms could then be detected by the usual freezing molasses method or used as

a starting point for further atomic manipulation and experimentation. This pushing beam was

combined with the phase-modulated Raman beam by a cube beam splitter before the half-wave

plate, and thus was circularly polarized as it propagated along the Raman-beam axis. The beam

also diverged rapidly (it passed through a 25.4 mm focal length lens about 0.5 m away from the

atoms), so that it was large and uniform at the atomic cloud. This light was derived from the

DBR laser beam line by a double-passed, 97.5MHz fixed-frequency AOM, as shown in Fig. 5.8.

The light was turned on at low level for 800 µs, accelerating the atoms to over 100 · 2�kL. The

circular polarization of this beam had the advantage that atoms were optically pumped into the

F = 4, mF = 4 −→ F ′ = 5, mF = 5 cycling transition; atoms in this excited state do not

decay (by dipole transitions) to the F = 3 ground level, and atoms in F = 4, mF = 4 cannot

be pumped off-resonantly to the F ′ = 4 excited level (by a dipole transition), so this transition

is tightly closed. However, it was still important to use a sufficiently low light level during the

first part of the pushing to avoid off-resonant excitation before the atoms were fully optically

pumped. This procedure removed the F = 4 atoms from the detection region after the drift

time with about 99.9% efficiency, with the remaining atoms forming a broad background in the

momentum distribution measurements.

To detect the number of atoms transferred by the Raman interaction, we used the usual

ballistic-expansion measurement. We ignored the spatial dependence of the CCD image and

simply counted the total fluorescence, which after a background subtraction is proportional to

the number of atoms in the F = 3 level. A sample measurement of Raman Rabi oscillations

on resonance (for one of the Zeeman transitions) is shown in Fig. 5.9, which exhibits clean

oscillations with a certain amount of damping. For comparison, the Raman Rabi oscillations in

the counterpropagating arrangement are shown in Fig. 5.10. The oscillations in this configuration

have lower contrast, as we expect from the previous theoretical discussion, and show much lower

overall population transfer due to the velocity selectivity. Some detuning-dependent Raman

selection profiles for the copropagating mode are shown in Fig. 5.11 for several interaction times.



5.3 Stimulated Raman Velocity Selection 181

5.3.5 Hyperfine Magnetic Sublevel Optical Pumping

One difficulty in implementing velocity selection via stimulated Raman transitions in cesium is

due to the highly degenerate level structure. For a generic polarization state of the Raman fields,

there are 15 possible transitions, each with possibly different Zeeman and Stark shifts, as well

as different Rabi frequencies. To make this situation much cleaner, we implemented optical

pumping of the atoms into the F = 4, mF = 0 sublevel before driving the Raman transition.

We effected this optical pumping using another beam derived from the DBR laser, this time

with a 56 MHz AOM (as shown in Fig. 5.10) to shift the beam down in frequency to be on

resonance with the F = 4 −→ F ′ = 4 transition. The beam was spatially filtered and introduced

via the MOT beam window on the top of the chamber, so that its linear polarization direction

was along the Raman-beam propagation axis. This light was pulsed on for 50 µs, beginning

66 µs before the end of the of the ramp-down time of the 3D optical lattice. Because the

F = 4, mF = 0 −→ F ′ = 4, m′
F = 0 transition is forbidden in the dipole approximation, the
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Figure 5.9: Example of an experimental measurement of excited population oscillations for a

resonant, stimulated Raman transition in copropagating mode. The damping here is due mostly

to spontaneous scattering of the Raman light. The data points here were not averaged over

multiple measurements.
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atoms accumulated in the F = 4, mF = 0 sublevel after several fluorescence cycles. Atoms that

decayed to the F = 3 ground level were returned to F = 4 by the usual repumping light, which

was turned on at the same time as the optical-pumping light. The repumping light was left on

until the end of the 3D lattice ramp-down time to ensure that all atoms were in the F = 4

ground level. Two of the Helmholtz coils were also pulsed on to provide a 1.5 G bias field along

the polarization direction of the pumping light, which swamped other residual magnetic fields

and thus prevented remixing of the magnetic sublevels. The coils were turned on 200 µs before

the pumping light to allow transients to decay away. This procedure pumpedmost (>95%) of the

atoms into the proper magnetic sublevel. Because the Raman beams were circularly polarized,

they drove the atoms from the F = 4, mF = 0 level to the F = 3, mF = 0 level via the

F ′ = 3, mF = 1 and F ′ = 4, mF = 1 excited states. The atoms thus all experienced the same

Raman Rabi frequency, and the Raman transition frequency was insensitive to magnetic fields to

first order (this transition is the cesium clock transition that currently defines the measurement
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Figure 5.10: Example of an experimental measurement of excited population oscillations for a

resonant, stimulated Raman transition in counterpropagating mode. The scale of the vertical

axis is the same as in Fig. 5.9. The population transfer is much less efficient due to the velocity

selectivity of the counterpropagating configuration. The oscillations also show an upwards trend

due to relaxation of nonresonantly coupled atoms. The data points here were not averaged over

multiple measurements.
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Figure 5.11: Experimental measurement of excited population vs. Raman detuning ∆R for dif-

ferent interaction (square) pulse lengths. The data are shown as points, and the solid lines

represent the best fit of a model based on direct integration of the Schrödinger equation for

the two-level atom. The asymmetries of the profiles, which is not predicted by Eq. (5.26), can

largely be explained by broadening due to the intensity variation of the Gaussian profile of the

Raman beams over the atomic sample, which is included in the model. The model was fit si-

multaneously to all the distributions, and the fitted parameter values are: ΩR = 2π · 2.1 kHz,
a coherence damping rate of 21 Hz, and a Raman beam waist w0 = 2 mm (assuming a Gaus-

sian MOT spatial profile with width parameter σx = 0.15 mm). The data points here were not
averaged over multiple measurements.
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of time). Because of the Zeeman shift due to the large bias field, any atoms left in other magnetic

sublevels did not participate in the Raman transition. Unfortunately, these benefits came at the

expense of temperature, which increased to 3 µK (or σp/2�kL = 1.9) after the optical pumping

(beginning with atoms cooled in the 3D optical lattice). One possible improvement would be

to implement sideband cooling into the mF = 0 sublevel [Taichenachev01], but such a scheme

requires a considerable increase in the complexity of the experiment.

5.3.6 Implementation of Stimulated Raman Velocity Selection

The 3D lattice cooling, Raman-field setup, pushing-beam setup, and optical-pumping procedure

were all important for implementing velocity selection by stimulated Raman transitions. Typi-

cally, we selected atoms to be near p = 0 as a starting point for further quantum state preparation

techniques. The procedure for Raman velocity selection (or “Raman tagging”) atoms near p = 0

was as follows:

1. Trap and cool atoms in the MOT, and then further cool the atoms in the 3D lattice.

2. Turn on the magnetic bias field along the direction of the Raman beams to define the

quantization axis.

3. Use the optical pumping light (during the ramping down of the 3D lattice) to prepare

atoms in F = 4, mF = 0 sublevel.

4. Use the Raman beams (both with σ+ polarization) in counterpropagating mode to tag

atoms with p = 2�kL in the F = 4, mF = 0 state to the F = 3, mF = 0 state with

p = 0. The Raman pulse has appropriate intensity and duration to drive a π-pulse with

the desired momentum width.

5. Use the resonant pushing light to remove atoms in F = 4.

The atoms were then further manipulated as desired, as described below, and then subjected to

the 1D, time-dependent standing-wave interaction as described in the following chapter. In the

typical experiment in Chapter 6, the Raman beams drove an 800 µs, square π-pulse. This pulse
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should result in a selected profile as in Eq. (5.26), with a half width at half maximum (HWHM)

of 0.03 · 2�kL. Because of the resolution limit set by the initial size of the MOT cloud, we could

not directly verify this profile with our ballistic-expansion measurement, but the expansion rates

and the scaling of the fluorescence of the selected atoms with the pulse duration were consistent

with the theoretical expectation. This extreme velocity selection was crucial to the success of

the experiments in Chapter 6, but had the unfortunate side effect that about 99.5% of the atoms

(after 3D lattice cooling) were discarded, causing relatively weak signals in the measurements.

5.3.7 Raman Cooling

With the setup described above, it should in principle be possible to implement Raman cooling,

where a large fraction of the atoms could be cooled into a narrow velocity slice as narrow as

(or perhaps narrower than) the Raman-tagged slice. Raman cooling works in a repetitive cycle,

where atoms at all velocities, except for those in a “target” region near zero momentum, are

transferred from the F = 4 level to the F = 3 level by velocity-selective, stimulated Raman

transitions. Then the repumping light is pulsed on to return the atoms to F = 4, but with

slightly different momentum due to the fluorescence cycle. We implemented the dual-AOM

scheme described above so that the direction of the momentum transfer due to the Raman

transition could be reversed, and thus during the Raman tagging cycle the atoms on either side

of the target region could be moved towards it. However, there are several technical challenges

involved in implementing Raman cooling, the most severe of which is the presence of residual

magnetic fields. For efficient cooling, the fields must be nulled to 1 mG or better [Reichel94],

necessitating the use of a glass chamber (with no ferromagnetic materials) and µ-metal shielding,

because the atoms are distributed among the magnetic sublevels. Furthermore, Raman cooling

leaves a broad background in the momentum distribution [Reichel94; Reichel95], which must be

removed by a final tagging sequence as described above; however, we have noted that transitions

associated with different sublevels proceed at different rates, making a clean π-pulse difficult.

An optical pumping cycle after cooling would ruin the very cold temperatures, but selecting only

atoms in a given sublevel would result in another large hit in atom number.
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To circumvent these technical problems, we attempted a modified Raman-cooling pro-

cedure, which was performed in the presence of a bias field as above. In addition to the re-

pumping, we also applied the optical pumping light during the recycling stage of each iteration.

The target state in this case is the F = 4, mF = 0 state simultaneously with p = 0, which is

a much more stringent requirement. After a brief attempt, we were not able to cool using this

technique, and we instead elected to use averaging as a more straightforward way to address the

difficulty of small signals.

5.4 Interaction-Potential Phase Control

An important part of the state-preparation procedure for the experiments in Chapter 6 was the

ability to change the phase of the one-dimensional optical lattice. One method for changing the

phase is suggested by the analysis in Section 2.6, where we concluded that a frequency difference

between the two traveling-wave components results in a moving standing wave. A phase shift

can thus be obtained by introducing a pulsed frequency difference. From an experimental point

of view, this method is not optimal because it requires splitting the beam, reducing the available

intensity (relative to a retroreflecting setup), and it requires careful mode matching of the two

traveling waves.

Because the optical lattice was formed by retroreflecting a laser beam in the setup here,

the phase of the standing wave was set by the position of the retroreflector. Thus we could

move the standing wave simply by moving the retroreflector. We could effectively move the

retroreflector by inserting an electro-optic phase modulator (EOM) in the beam path just before

the retroreflector. Doing so gave direct electronic control of the optical path length between

the atoms and the retroreflector. We used a Conoptics, Inc. model 360-40 EOM, which used a

40 mm long lithium tantalate (LTA) crystal, with a model 302 driver. The EOM had a 2.7 mm

clear aperture, and we focused the optical lattice beam onto the retroreflector using a 300 mm

focal length lens to ensure that the EOM did not clip the beam. The EOM was also aligned so

that the beam propagated slightly off the EOM axis to avoid interference fringes (the reflections

of the EOMwere also minimized by antireflection coatings on the windows and index-matching
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fluid inside the housing). To avoid polarization-modulation effects, it was important to carefully

set the EOM angle relative to the lattice-beam polarization. The lattice-beam polarization was

set to be horizontal by a cube polarizer mounted just before the entry of the lattice into the

chamber. On the other (retroreflecting) side of the chamber, we inserted another cube polarizer

before the EOM and adjusted the EOM angle to minimize the signal rejected from the polarizer

as the EOM phase was scanned.

In the previous setup of Chapter 3, the stability of the retroreflector was ensured by

rigidly mounting it to the vacuum chamber. This new setup was too large to be mounted directly

on the chamber, so we constructed a platform to mount the optics, as shown in Fig. 5.12. This

platform consisted of a 1/2” thick aluminum plate (jig plate), which rested on a similar piece of

1/2” thick aluminum. A layer of 1/2” thick Sorbothane damping rubber was sandwiched between

Retroreflector

EOM
Damping Material

Lens

Figure 5.12: Photograph of the phase-control setup for the one-dimensional optical lattice. The

components in this setup are shownmounted on the damped, raised, mounting table, and several

components for the stimulated Raman optical setup are also visible both on the main and raised

tables.
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the two aluminum plates. The lower plate was mounted rigidly to the table by six stainless

steel posts (1.25” diameter) in an irregular pattern. The optical-lattice beam propagated only

2” above the platform surface to minimize vibrations of the optical mounts. An interferometer

constructed on the platform itself measured negligible vibrations, but was incapable of detecting

center-of-mass vibrations of the platform, which also contributed to phase jitter of the optical

lattice.

This setup provided good phase control over a large range in phase (the EOM controller

had an 800 V range, where 250 V corresponds to a 2π phase shift of the lattice phase) on a

fast (∼ 1 µs) time scale. One caveat, however, is that fast changes in the phase could excite

piezoelectric resonances of the EOM, where the crystal itself begins mechanically ringing as a

result of the sudden excitation. This effect is illustrated in Fig. 5.13, where the EOM phase,

as measured by a Michelson interferometer, shows ringing in response to a sudden step in the

control voltage. The resonance occurred at 150 kHz, with a quality factor Q of about 12. Of

the available options from Conoptics, this LTA modulator was the most suitable; the KD*P
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Figure 5.13: Response of the electro-optic modulator to a sudden phase step, as measured in-

terferometrically. The fitted model (dashed line) is a sum of two pure exponentials of different

time constants and a damped cosine: f(t) = 0.87 · exp (−t/0.37 µs) + 0.11 · exp (−t/7.5 µs) +
0.011 · cos (2πt/6.8 µs− 0.79) exp (−t/25 µs) + 0.004 (for t > 0).



5.5 State-Preparation Sequence 189

modulators have a smaller available phase range while exhibiting substantially worse ringing than

the LTA modulator, even when the crystal is mechanically clamped, and the ADP modulators,

which have no piezoelectric resonances, have poor transmission at 852 nm.

5.5 State-Preparation Sequence

Now we will discuss how the various tools presented in this chapter were used to prepare lo-

calized initial states in phase space. An overall schematic view of the procedure is illustrated

in Fig. 5.14, which shows the condition of the state in phase space at various points in the pro-

cess. This state-preparation procedure began with the Raman velocity selection process as in

Section 5.3.6, which prepared a quantum state that was subrecoil in momentum but delocalized

in space. The 1D optical lattice was then turned on adiabatically, with the same temporal pro-

file and time constant (30 µs) as the 3D lattice, although here the leading edge of the profile

was clipped 300 µs before the maximum intensity was reached. The lattice caused the atoms

to become localized at the potential minima, at the expense of some heating in momentum.

Because the initial momentum distribution was narrow compared to the photon recoil momen-

tum �kL, the resulting phase-space distribution had the discrete structure shown in Fig. 5.14.

This structure can be understood intuitively in the discrete momentum transfer (in steps of

2�kL) from the lattice as it is turned on, and also indicates coherence of the wave packet over

multiple potential wells. Recalling from Chapter 2 that for adiabatic processes the band index

and quasimomentum are preserved, the atoms were loaded completely into the lowest energy

band of the optical lattice. For deep wells (as used in the experiment), the lowest band is ap-

proximately the harmonic oscillator ground state (repeated in each well), and thus the overall

distribution envelope was approximately a minimum-uncertainty Gaussian wave packet, modulo

the standing-wave period. The structure of subrecoil “slices” in the distribution out of an overall

Gaussian profile was important in the experiments in Chapter 6, and we will return to this issue

in the discussion there.

After the atoms became localized in the lattice potential wells, the phase of the standing

wave was shifted by around 1/4 of the lattice period, which had the effect of displacing the atoms
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2. Turn on 1D standing wave
adiabatically

p

p

x

p

x

1. Begin with Raman-prepared
(subrecoil) atoms

x

p

x

3. Sudden shift of standing-
wave phase

4. Free evolution of atoms in
optical lattice

Figure 5.14: Schematic picture of the state-preparation sequence, beginning with the atoms

prepared by subrecoil Raman velocity selection. The influence on the atoms in phase space is

illustrated. The “striped” character of the distributions is a result of the discrete nature of the

momentum transfer to the atoms.
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onto the gradients of the potential. They were then allowed to evolve in the stationary optical

lattice, where they returned to the potential minima, acquiring momentum in the meantime. In

a harmonic potential, this procedure amounts to a boost of the wave packet in momentum, where

the distance in momentum is set by the amount of displacement. The anharmonicities in the

optical lattice led to a slight distortion of the wave packet, although it was still mostly Gaussian.

More importantly, the subrecoil structure of the wave packet was preserved because all of this

motional control was induced by the lattice. We refer to this state preparation procedure by the

acronym “SPASM,” for “State Preparation through Atomic Sliding Motion.”

To make this procedure more concrete, the experimental parameters for the first group

of data in Chapter 6 (i.e., for α = 10.5, k̄ = 2.08) were as follows: the Raman π-pulse selection

time was 800 µs, giving a velocity slice with a HWHM of 0.03 · 2�kL; the lattice was turned on

to a depth of αp = 11.8 (in the units of Section 2.7); the lattice phase was shifted by 0.25 of the

lattice period, and the atoms evolved in the lattice for 6 µs, which was the time after which the

atomic momentum was maximized; and the resulting distribution (in momentum) was peaked

at 4.1 · 2�kL, with a width σp = 1.1 · 2�kL. For the second group of data (k̄ = 2.08, for various

other values of α), the same Raman velocity selection parameters were used; the optical lattice

was turned on to a maximum depth of αp = 16.4; the lattice phase was shifted by 0.21 of the

lattice period, and the atoms evolved for 4.5 µs in the lattice; and the prepared distribution was

peaked at 4.2 · 2�kL, with a width σp = 1.7 · 2�kL. For the third data group (k̄ = 1.04), the

same Raman velocity selection was again used; the optical lattice was turned on to a maximum

depth of αp = 30.9; the lattice phase shift was 0.30 of the standing-wave period, after which the

atoms evolved for 3.5 µs; and the momentum distribution was peaked at 8.2 · 2�kL, with a width

σp = 2.1 · 2�kL.

The procedure for carrying out the experiments in the following chapter is then very

similar to the procedure in Chapter 3, albeit with a much more complicated state-preparation

sequence inserted after the initial cooling and trapping of the cesium atoms. After the state-

preparation sequence, the atoms were exposed to the temporally modulated optical lattice,

where the dynamics of interest occurred. The atoms were then allowed to drift freely in the
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dark for 20ms, and the freezing molasses andCCD camera enabled a measurement of the atomic

momentum distribution by imaging the atomic fluorescence for 20 ms.

5.6 Calibration of the Optical Potential

After the introduction of a lens and EOM in the beam path of the 1D optical lattice, we found

that the calibration method of Section 3.4.3 no longer produced reliable values for the optical

potential depth. This was most likely due to the breakdown of the assumption that the beam

waists measured at the knife edge and CCD camera were the same as the waist at the MOT.

Thus, the CCD camera was only used to collimate the beam as much as possible: first, the beam

was retroreflected with a temporary mirror before the (EOM) lens, and the beam was adjusted so

that two beam spots on the CCD (going to and from the vacuum chamber) were approximately

the same; then, the temporary mirror was removed, and the longitudinal position of the lens was

adjusted to make the spots again equal, thus ensuring that the lens focused the beam onto the

retroreflecting mirror.

The state-preparation method outlined above suggests another, in situ method to cal-

ibrate the potential amplitude. If the Raman velocity selection procedure is used to select a

subrecoil momentum sample of the atoms, and the 1D lattice is adiabatically turned on to a

large potential depth, an approximately minimum-uncertainty wave packet (modulo the period

of the lattice) results, as mentioned above. If the EOM then provides a sudden but small phase

shift, the atoms begin to oscillate in the lattice. The oscillation frequency serves as a direct mea-

surement of the potential depth. In the simplest approximation, valid for large potential depths,

the oscillations can be regarded as harmonic oscillations near the parabolic potential minima.

Recalling from Chapter 2 that the unscaled Hamiltonian for atomic motion in the optical lattice

has the form

H =
p2

2m
− V0 cos(2kLx) , (5.30)

we can expand the potential to O(x2) about x = 0 to obtain the equivalent harmonic oscillator,

which has a period

THO =
π

kL

√
m

V0
. (5.31)
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However, for a given potential depth V0, we would actually underestimate the true oscillation

period as a result of two effects, anharmonic frequency shifts and quantum effective potential

frequency shifts, which we now discuss.

5.6.1 Anharmonicity

Using the same unit scaling as in Chapter 2 (i.e., units where � = 1), the pendulum Hamiltonian

is

H =
p2

2
− αp cos x . (5.32)

For a particular value E of the Hamiltonian, we can write the pendulum period as [Tabor89]

T (k) =
4√
αp

F
(π
2
, k

)
, (5.33)

where F (θ, k) is the elliptic integral of the first kind, and

k =

√
1
2
(1 + E/αp) . (5.34)

Since F (π/2, 0) = π/2, the small-displacement (harmonic) frequency for this equation is

THO = T (0) =
2π√
αp

, (5.35)

so that the fractional period shift due to the lattice anharmonicity is

T (k)
THO

=
2
π
F

(π
2
, k

)
= 1 +

k2

4
+ O(k4) .

(5.36)

Thus, larger amplitudes of oscillation result in longer oscillation periods, which we expect from

the fact that the lattice potential drops below the parabolic approximation away from the poten-

tial minima.

5.6.2 Quantum Effective Potentials

In addition to the classical anharmonic effects, the oscillation period in the lattice is also in-

creased by the fact that we are considering a quantum wave packet. This effect is illustrated by

the numerical simulations in Fig. 5.15. Because of the adiabatic loading of the atoms into the
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ground state of the lattice, we can invoke the harmonic approximation to argue that the state

within a single well is approximately minimum-uncertainty Gaussian with momentum uncer-

tainty σp = (αp/4)1/4 and spatial uncertainty σx = (4αp)−1/4. From the Ehrenfest equations

of motion for the mean values of x and p [Ohanian90],

∂t〈x〉 =
〈p〉
m

∂t〈p〉 = −〈∂xV (x)〉 ,

(5.37)

we might expect that the quantum mean values oscillate as in the classical case, but where the

potential is “smeared” out by the spatial extent of the wave packet. Performing a convolution of

the pendulum potential with the spatial distribution of the Gaussian wave packet, we find that

this effective potential is still sinusoidal, but with a reduced amplitude:

αeff = αp exp
(
− 1
4
√
αp

)
. (5.38)
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Figure 5.15: Comparison of simulated pendulum oscillations of the classical case in the harmonic

approximation (dashed line) to the anharmonic classical pendulum oscillations (dotted line) and

the oscillations of an initially minimum-uncertainty quantum wave packet (solid line). The

slowing effects of the anharmonicity and quantum wave packet extent are evident here. The

system parameters are αp = 10 (and � = 1), with the wave packet and trajectories initially
centered at (x, p) = (0, 1.5).
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Because we have scaled the units so that � = 1, the scaled well depth αp represents the “degree

of quantumness” of the pendulum, with larger values representing more classical behavior (and

thus a smaller wave-packet area in phase space), as reflected in this quantum scaling factor.

Hence, we should expect that the quantum wave packet moves with a longer period due to

the reduced effective potential amplitude, and also that the wave packet motion will be further

retarded by “classical” anharmonic effects in the effective potential.

5.6.2.1 Wigner-Function Derivation

Hug and Milburn [Hug01] have recently produced a more formal derivation of a quantum scal-

ing factor based on the Wigner-function dynamics, in the context of the amplitude-modulated

pendulum. Here we adapt this calculation to the ordinary pendulum, since the derivation does

not depend on the temporal modulation of the potential.

We begin with the general equation of motion for the Wigner function (which we intro-

duced in Chapter 1 as the Moyal bracket),

∂tW (x, p) = −p∂xW (x, p) +
i

k̄

[ ∞∑
s=0

1
s!

(
k̄

2i

)s

∂s
xV (x, t)∂

s
pW (x, p)

−
∞∑

s=0

1
s!

(
− k̄

2i

)s

∂s
xV (x, t)∂

s
pW (x, p)

]
,

(5.39)

where we will keep the scaled Planck constant k̄ explicit for the time being. We can then insert

the pendulum potential,

V (x) = −αp cos(x) , (5.40)

with the result

∂tW = −p∂xW +
αp

k̄
sin(x)

∞∑
s=0

1
s!

(
k̄

2

)s

[1− (−1)s]∂s
pW . (5.41)

If make use of the Taylor expansion

W (x, p+ k̄/2) =
∞∑

s=0

1
s!
[∂s

pW (x, p)]
(
k̄

2

)s

, (5.42)

then Eq. (5.41) becomes

∂tW (x, p) = −p∂xW (x, p) +
αp

k̄
sin(x) [W (x, p+ k̄/2)−W (x, p− k̄/2)] . (5.43)
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The goal here to put this equation of motion into “classical form” (of a Liouville equation for a

classical phase-space distribution) with an effective potential Veff :

∂tW = −p∂xW + ∂xVeff∂pW . (5.44)

Hence, we can make the identification

∂xVeff =
αp

k̄
sin(x)

W (x, p+ k̄/2)−W (x, p− k̄/2)
∂pW (q, p)

. (5.45)

We now take the Wigner function to be Gaussian,

W (x, p, t) =
1
πk̄

exp
[
− ξ

k̄
(x− 〈x〉)2 − 1

k̄ξ
(p− 〈p〉)2

]
, (5.46)

where ξ(t) is a time-dependent squeezing parameter. So, we can evaluate the terms in the

effective potential,

∂pW (x, p) = −2(p− 〈p〉)
k̄ξ

W (x, p) , (5.47)

and

W (x, p± k̄/2) = exp
(
− k̄

4ξ

)
exp

[
∓1
ξ
(p− 〈p〉)

]
W (x, p) , (5.48)

and thus the effective potential becomes

Veff = −αp cos(x) exp
(
− k̄

4ξ

) sinh
[
1
ξ
(p − 〈p〉)

]
1
ξ
(p− 〈p〉)

. (5.49)

If we assume that the wave packet remains localized (which is implicit in assuming the Gaussian

form), then the sinh ratio is approximately unity. Thus, the effective potential is the original

potential compressed by a factor of exp[−k̄/(4ξ)].

Turning to the quantum pendulum, we can select a preferred value of ξ based on the

adiabatic loading into the lattice. Rewriting the Wigner function in terms of σx and σp and using

σxσp = k̄/2,

W (x, p) =
1√
2πσx

exp
[
−(x− 〈x〉)2

2σ2
x

]
1√
2πσp

exp
[
−(p − 〈p〉)2

2σ2
p

]

=
1
πk̄

exp

[
−
−2σ2

p

k̄2
(x− 〈x〉)2 − 1

2σ2
p

(p− 〈p〉)2
]

,

(5.50)
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we find that ξ = 2σ2
p/k̄ = k̄/(2σ2

x). Then, for the quantum pendulum in the harmonic oscillator

approximation, we have k̄ = 1 and σ2
p =

√
αp/2, so ξ =

√
αp. Thus, the effective potential in

this case is given by

Veff(x) = −αp cos(x) exp
(
− 1
4
√
αp

)
, (5.51)

which is the same result that we found in the simple Ehrenfest (Gaussian convolution) model.

5.6.3 Calibration by Simulation

From the above analysis, we can see that the situation is not entirely simple when deciding

what oscillation frequency to expect, given a particular potential depth. To directly account
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Figure 5.16: Experimentally measured oscillation periods in the optical lattice, normalized to the

classical period in the harmonic-oscillator approximation, shown as a dashed line. For comparison

the harmonic period in the quantum effective potential is also shown (solid), which agrees rea-

sonably well with the data. Also shown is the splitting of the two lowest eigenstates (with zero

quasimomentum) calculated for the sinusoidal potential (dot-dashed line). These latter two

curves diverge for small αp, where the Gaussian approximation for the ground state of the lat-

tice breaks down. The experimental data points are averages over three measurements, and the

error bars represent statistical variations among the repeated measurements. The αp scale was

calibrated by comparing the periods in the right half of the plot directly to quantum simulations,

as described in the text.
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for these effects, we compared the measured wave-packet oscillations to quantum-pendulum

simulations. We first extracted the oscillation period of the experimental data, along with the

maximum average momentum achieved by the atomic distribution, by fitting an exponentially

damped cosine function to the measured 〈p〉 evolution data. Then a quantum simulation was

set up for a minimum-uncertainty wave packet with the same maximum average momentum,

and the αp parameter in the simulation was adjusted until the simulated period matched the

experimental period. The simulation was facilitated by the fact that the experiment used narrow

Raman velocity selection, so that it was a good approximation to use only the discrete plane-wave

basis p = n2�kL (for integer n). Although anharmonic effects were taken into account by using

the same maximum momentum in the simulations, these calibrations were typically done with

small EOM phase displacements (about 0.05 of the lattice period) to minimize these effects

and maintain the Gaussian character of the wave packet as long as possible. When performed

with several different lattice intensities, the resulting calibrated values of αp typically agreed

at the 3% level or better, although we quote a 5% uncertainty for all the well-depth values in

Chapter 6 to account for other systematic effects (such as piezoelectric ringing of the EOM) in

the calibration procedure. Fig. 5.16 shows a series of experimentally measured oscillation periods

as a function of αp, calibrated as described here.


