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4.1 Overview

Now we come to the first set of experiments discussed in this dissertation. In these studies,

we focus on a realization of the kicked-rotor problem, formed by periodically pulsing on the

optical standing wave. We will be concerned with the global (momentum) transport in the

kicked rotor, since the classical and quantum transport are quite dramatically different due to

dynamical localization. As we pointed out in Chapter 1, the difference between the quantum

and classical behaviors is an apparent problem for correspondence. The goal of the research in

this chapter is to directly address quantum–classical correspondence in the context of the kicked

rotor. We will see that decoherence due to spontaneous emission or externally-imposed noise can

destroy dynamical localization. Furthermore, we show that it is possible to obtain quantitative

correspondence (at the global level of distributions and expectation values) in the presence of

noise, even in a manifestly quantum regime.

The material presented in this chapter spans a number of previous publications from

our group. The initial work on external noise and spontaneous emission effects was presented

in [Klappauf98b]. The original confirmation of Shepelyansky’s quantum scaling and the obser-

vation of a nonexponential late-time distribution were both presented in [Klappauf98a]. The

effects of the finite pulses in the experiment were characterized in [Klappauf99]. This earlier

material is reviewed in [Klappauf98c], in more detail than we provide here. Later, we showed

that we could observe ballistic transport at quantum resonance [Oskay00], even without subre-

coil velocity selection. The quantitative studies of noise effects on quantum localization and the

return to the classical limit were presented in [Steck00; Milner00]. Finally, an experimental test

of a universal quantum diffusion theory was presented in [Zhong01].

4.2 Rescaling

The atom-optics realization of the kicked rotor is described by the Hamiltonian

H(x, p, t) =
p2

2m
+ V0 cos(2kLx)

∑
n

F (t− nT ) . (4.1)
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Here, T is the kick period, and F (t) is a pulse function of unit height and duration tp � T .

Before proceeding, we will transform to scaled units to simplify our discussion, as we did for the

pendulum in Chapter 1. As before, the spatial coordinate has a natural scaling,

x′ := 2kLx . (4.2)

This time, however, there is a natural time scale for the problem, which defines the scaling of

the time coordinate,

t′ := t/T . (4.3)

The corresponding scaling of the pulse is given by

f(t′) := F (t)/η , (4.4)

where we have defined the pulse integral

η := T−1
∫ ∞

−∞
F (t) dt ∝ tp, (4.5)

so that the scaled pulse is normalized to unity (i.e.,
∫ ∞
−∞ f(t) dt = 1). If we define the constant

k̄ := 8ωrT , (4.6)

then the time scaling here is different from the pendulum time scaling by precisely this factor.

This difference suggests that we should change the momentum scaling by the same factor,

p′ :=
k̄

2�kL

p . (4.7)

Now the scaled coordinates obey the commutation relation,

[x′, p′] = ik̄ , (4.8)

and thus we can interpret k̄ as a scaled Planck constant, which can be “tuned” by varying the

period T . More concretely, this parameter measures the action scale of the system in physical

units compared to �. We can then use the energy transformation H ′ := (k̄/�)TH , and defining

the stochasticity parameter as

K :=
k̄T

�
ηV0 , (4.9)
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the Hamiltonian in scaled units takes the form

H(x, p, t) =
p2

2
+K cosx

∑
n

f(t − n), (4.10)

after dropping the primes. In this way we have reduced the classical system to a single parameter

(K) and the quantum system to two parameters (K and k̄). Note that in these units, the

constant k̄ also represents the quantization scale for momentum transfer, rather than unity as in

the pendulum units or 2�kL in unscaled units.

4.3 Standard Map

In the limit of arbitrarily short pulses, the pulse function f(t) is replaced by the Dirac delta

function δ(t),

H(x, p, t) =
p2

2
+K cos x

∑
n

δ(t − n) , (4.11)

and this limit of the problem is commonly termed the “δ-kicked rotor.” This limit is particularly

convenient because the equations of motion can be reduced to a simple discrete map. From the

form of the Hamiltonian (4.11), we note that during the kick, the potential term dominates the

kinetic term. Between kicks, the potential term is zero, and the motion is that of a free rotor.

Using these observations, we can integrate the equations of motion over one temporal period of

the Hamiltonian.

Differentiating (4.11), Hamilton’s equations of motion become

∂tp = −∂H

∂x
= K sinx

∞∑
n=−∞

δ(t− nT )

∂tx =
∂H

∂p
= p .

(4.12)

We will integrate Eqs. (4.12) to construct a map for x and p just before the nth kick. Letting ε

be a small, positive number, we integrate the equation for p,

∫ tn+1−ε

tn−ε

∂tp(t) dt =
∫ tn+1−ε

tn−ε

K sinx
∑
n

δ(t − n) dt , (4.13)

where tn = n is the time of the nth kick. This equation then becomes

p(tn+1 − ε)− p(tn − ε) = K sinx . (4.14)
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Similarly, we integrate the equation for x,

∫ tn+1−ε

tn−ε

∂tx(t) dt =
∫ tn+1−ε

tn−ε

p dt , (4.15)

which becomes

x(tn+1 − ε)− x(tn − ε) = ε p(tn − ε) + (1− ε) p(tn+1 − ε) . (4.16)

Then, letting ε → 0 and defining xn and pn to be the values of x and p just before the nth kick,

we obtain the mapping

pn+1 = pn +K sinxn

xn+1 = xn + pn+1 .
(4.17)

These equations, which constitute a one-parameter family of mappings parameterized by the

stochasticity parameter K, are known as the standard map (or Chirikov-Taylor map), so named

because of its broad importance in the study of Hamiltonian chaos. The significance of this

widely studied map is due to both its simplicity, which makes it amenable to both analytical and

numerical study, and the fact that many systems can be locally approximated by the standard

map [Chirikov79].

A number of standard-map phase plots are shown in Appendix B. The phase space for

the standard map is clearly invariant under a 2π translation in x, because of the corresponding

invariance of the mapping itself, and so x is usually taken to be within the interval [0, 2π). What

is perhaps less obvious is that the phase-space structure is also invariant under a 2π translation

in p, as well. This point is more easily recognized from the Hamiltonian of the δ-kicked rotor

(for which the standard-map phase space is a Poincaré section). Using a form of the Poisson sum

rule,
∞∑

n=−∞
δ(t− n) =

∞∑
n=−∞

cos(2πnt) , (4.18)

we can rewrite the δ-kicked rotor Hamiltonian as

H(x, p, t) =
p2

2
+K cosx

∞∑
n=−∞

cos(2πnt)

=
p2

2
+

∞∑
n=−∞

K cos(x− 2πnt) .

(4.19)
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From this form of the Hamiltonian, it is apparent that the δ-pulsed potential can be regarded

as a superposition of an infinite number of unmodulated pendulum potentials moving with mo-

mentum 2πn for every integer n. The Hamiltonian is therefore invariant under boosts of 2πn in

momentum, so the phase space is 2π-periodic in both x and p. Each of these pendulum terms is

associated with a primary nonlinear resonance in the phase space, located at (x, p) = (π, 2πn),

and the interactions between these resonances result in chaos and rich structure in phase space.

4.4 Classical Transport

We will now consider the global behavior in the standard map. In particular, we will consider

the transport in the limit of large K, where the phase space is predominantly chaotic (which

operationally means K � 5). Also in this limit, there are no Kolmogorov-Arnol’d-Moser (KAM)

surfaces that span the phase space, dividing the phase space in the momentum direction and pre-

venting chaotic transport to arbitrarily large momenta (this is true for any K above the Greene

number, KG ≈ 0.971635 [Greene79]). Broadly speaking, invariant surfaces (KAM surfaces,

which are traceable to invariant surfaces in the integrable limit, and islands of stability) con-

fine trajectories, while chaotic trajectories are free to ergodically wander throughout the chaotic

region. In the next section we will find that the chaotic motion can be thought of as being diffu-

sive (like a random walk), although the presence of small but nevertheless important islands of

stability complicate this diffusion picture.

4.4.1 Diffusion and Correlations

Focusing on the momentum transport in the standard map, we use the first equation in the

standard map (4.17) to calculate the kinetic energy of a trajectory ensemble after n iterations:

En :=
〈p2n〉
2

=
1
2

n−1∑
m,m′=0

Cm−m′ .
(4.20)

Here, the correlation functions Cm are defined as

Cm−m′ := 〈K sinxmK sinxm′〉 . (4.21)
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(A similar discussion along these lines can be found in [Cohen91], but with a slightly different

definition for the correlations.) The angle brackets here denote an average over the initial en-

semble. For the purposes of the present analysis, we can take this average to be uniform over the

unit cell in phase space, which is appropriate for the initial distribution of MOT atoms for the

experimental parameters (for which the distribution is broad in both x and p compared to the

unit cell size). The correlations also obviously depend only on the difference m −m′, as there

is no explicit time dependence in the standard map.

The sum in Eq. (4.20) can be straightforwardly evaluated if one makes the approxima-

tion that the coordinate xn is uniform and uncorrelated, as one might expect for very large K

when the phase space is almost entirely chaotic. Doing so allows one to ignore the off-diagonal

terms in the sum and gives the result

En =
C0

2
n =

K2

4
n . (4.22)

The energy growth is hence diffusive (linear in time), with diffusion rateDql(K) = K2/4, which

is known as the quasilinear diffusion rate. This quasilinear (random-phase) approximation is

equivalent to assuming that the motion is a randomwalk in momentum, and thus the momentum

distribution is asymptotically Gaussian with a width ∼
√
n.

The random-phase approximation is only valid in the limit of arbitrarily large K, how-

ever, and for finite K the higher-order correlations cannot always be neglected, even for trajec-

tories within the chaotic region of phase space. Nonuniformities in the chaotic region, especially

near the borders of stability islands, can lead to nonzero correlations, and thus to deviations of the

diffusion rate from the quasilinear value. A more general expression for the (time-dependent)

diffusion rate in terms of the higher-order correlations is

Dn := En+1 − En =
1
2

n∑
m=−n

Cm . (4.23)

These corrections to the diffusion rate were treated analytically in [Rechester80; Rechester81],

where the series (4.23) was shown to be an asymptotic expansion in powers of Bessel functions

of K. The result from [Rechester81] is

D(K) =
K2

2

(
1
2
− J2(K)− J 2

1 (K) + J 2
2 (K) + J 2

3 (K)
)

(4.24)
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to second order in the Bessel functions (we defer the derivation of these results to Section 4.8).

This expression represents the rate Dn of energy diffusion for long times n and large values of

K; the higher-order terms in the expansion are assumed at this point to have only a small contri-

bution, since they represent higher powers of 1/
√
K . In this expression, it is often convenient

to neglect J 2
3 (K) − J 2

1 (K), which is O(K−2), since for largeK this difference is much smaller

than J 2
2 (K), which is O(K−1); however, these terms will be important when generalizing this

result to account for amplitude noise below. This result shows that D(K) oscillates about the

quasilinear value, where the corrections become small compared to the quasilinear value as K

becomes large.

0

100

200

0 10 20 30

D
(K

)

K

Figure 4.1: Dependence of the rate of energy diffusion D on the stochasticity parameter. The

analytical diffusion expression [Eq. (4.24), dotted line] shows a significant oscillatory depar-

ture from the quasilinear prediction (dashed line). The simulated diffusion rate (solid line) is

computed assuming an initial condition of 105 particles distributed uniformly over a unit cell in

phase space, and is averaged over 1000 iterations of the standard map. The simulation agrees

with Eq. (4.24) except at the peaks of the diffusion curve, where the diffusion is dramatically

enhanced by the influence of accelerator modes.
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4.4.2 Accelerator Modes

The diffusion rate expression in Eq. (4.24) is plotted in Fig. 4.1 along with the diffusion rate

calculated in a simulation. The agreement is generally good, with the exception of the peaks in

the diffusion curve, where the simulated diffusion rate greatly exceeds the analytical prediction.

This discrepancy stems from the fact that we have so far assumed that the chaos causes the

correlation series (4.23) to drop off rapidly (i.e., exponentially). However, the presence of small,

stable islands (which are present for any value ofK) can make the longer time correlations impor-

tant, so that the correlation series decays slowly (i.e., like a power law [Karney83; Chirikov84]),

and as a result this series may not even rigorously converge.

The stable structures that cause the large deviations in Fig. 4.1 are the accelerator

modes [Chirikov79; Ishizaki91; Klafter96]. These structures are different from the usual stabil-

ity islands in that they are boosted by a constant amount in momentum on each iteration. The

main family of accelerator modes occur in the stability windows (2πj) < K <
√
(2πj)2 + 16 (for

integer j), where the corresponding accelerator mode hops monotonically by 2πj in momentum

per iteration [Chirikov79]. These intervals are precisely the locations of the strong deviations in

Fig. 4.1; note that the j = 0 case simply corresponds to the primary resonances, as we discussed

in the context of Eq. (4.19), whereas for j > 0 the accelerator modes are born by tangent bi-

furcations. From the inversion-symmetry properties of the standard map (i.e., invariance under

the combined transformation p → −p, x → −x), we can see that the accelerator modes occur

in pairs, which “stream” in opposite senses. The accelerator modes are obviously a peculiarity

of the standard map, a result of the periodicity of the phase space in the momentum direction.

Other systems, such as the experimental realization of the kicked rotor (which uses finite, not

δ-function, kicks) can still exhibit quasiaccelerator modes, which behave like accelerator modes

over a bounded region in phase space [Lichtenberg92].

The behavior of the trajectories trapped within stable islands and accelerator modes

is clearly different in nature from that of chaotic trajectories. However, these coherent phase-

space structures can still have a strong influence over the behavior of chaotic trajectories. The

boundaries of the islands, where the stable regions merge into the surrounding chaotic sea, are
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Figure 4.2: Upper graph: plot of the iterates pn for a standard-map trajectory in the presence

of accelerator modes, showing Lévy-flight behavior. The stochasticity parameter is K = 6.52,
and the initial condition is (x0, p0) = (3, 3.5). The Lévy flights are apparent as sudden jumps

in momentum as a result of many successive steps in the same momentum direction. Lower

graph: plot of the iterates pn for a standard-map trajectory showing normal diffusive behavior.

The stochasticity parameter isK = 9.5, and the initial condition is (x0, p0) = (3, 3.5).
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complicated and fractal in nature. This structure causes the island boundaries to be “sticky”

in the sense that chaotic trajectories can become trapped for some finite time in the boundary

layer. As the chaotic trajectories wander throughout the phase space, they will eventually wander

close enough to any island to become trapped. The self-similar structure of the boundary causes

these trapping times to have a power-law distribution [Karney83], and the resulting dynamics

are characterized by Lévy-flight behavior, rather than simple diffusion [Klafter96]. The regular

stability islands tend to trap trajectories at a fixed momentum, leading to reduced momentum

transport, whereas the accelerator modes lead to streaming (with many correlated momentum

steps), and therefore to enhanced momentum transport. This subdiffusive or superdiffusive

behavior due to island structures is referred to as anomalous diffusion [Chirikov84; Geisel87;

Klafter96; Benkadda97; Zumofen99]. The momentum distribution in this regime has asymp-

totically power-law tails, rather than Gaussian tails, and the kinetic energy scales as E(t) ∼ tµ,

where the transport exponent µ 
= 1 for anomalous diffusion. The Lévy flights in a standard-map

trajectory are apparent in Fig. 4.2, especially compared to a diffusive trajectory, shown also in this

figure.

As the transport in the standard map is not strictly diffusive, the proper framework for

the global dynamics is fractional kinetics [Zaslavsky97; Saichev97; Zaslavsky99]. However, since

the stable islands in phase space are typically small for large K (the areas of the islands are

asymptotically of the orderK−2 [Chirikov79]), it may take many kicks before the islands cause

large deviations from diffusive behavior. Hence, for the time scales observed in our experiments

(up to 80 kicks), it is appropriate to describe the classical dynamics as diffusive as long as large

accelerator modes are not present. Operationally, Eq. (4.24) is an excellent approximation away

from the main family of accelerator modes.

4.4.3 External Noise

The transport that we have studied is heavily influenced by correlations, and we might expect

that noise will therefore also have substantial effects on the global dynamics. One type of deco-

hering interaction that we will study more in Section 4.5.4 is spontaneous emission. To model
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the effects of spontaneous emission in the standard map, we could simply consider a fluctu-

ating momentum perturbation that models the random momentum recoil of the atom in re-

sponse to the photon scattering. We can compare this situation qualitatively to the results of

Ref. [Karney82] (see also [Lichtenberg92]), which considers the generalized (noisy) mapping

pn+1 = pn +K sinxn + δpn

qn+1 = qn + pn+1 + δxn ,
(4.25)

where δpn and δxn are time-dependent random variables. In the case where δpn and δxn are

chosen from a normal distribution, the diffusion rate from Eq. (4.24) becomes

D(K) =
K2 + 2ρ2

4
+
K2

2

[
− J2(K)e−(σ

2+ρ2/2)

− J 2
1 (K)e−(σ

2+ρ2) + J 2
2 (K)e−(2σ2+ρ2) + J 2

3 (K)e−(3σ2+ρ2)

]
,

(4.26)

where ρ2 is the variance of δpn, and σ
2 is the variance of δxn. The noise therefore affects the dif-

fusion by exponentially damping the higher-order correlations, and the momentum perturbation

also gives a direct contribution to the quasilinear term.

For the quantitative comparison of quantum and classical dynamics of the kicked rotor

in Section 4.6, we used amplitude noise, where the value of K is randomly varied from kick to

kick. This interaction has the advantage of being easy to apply and quantify compared to other

decohering interactions such as spontaneous emission. We can also treat the effects of this noise

on the classical correlations analytically, as we now discuss (again, some of the more gruesome

details are left to Section 4.8). The standard map including amplitude noise is

pn+1 = pn + (K + δKn) sinxn

qn+1 = qn + pn+1 ,
(4.27)

where δKn is a random deviation for the nth kick, distributed according to P (δK), with zero

mean. The noise again modifies the correlations, and the generalization of (4.21) is

Cm−m′ =
∫
d(δKm) · · ·d(δKm′ )P (δKm) · · ·P (δKm′)

×〈(K + δKm) sinxm(K + δKm′ ) sinxm′ 〉,
(4.28)

where there are |m − m′| + 1 integrals over the kick probability distribution, because the co-

ordinate at the later time depends on all the kicks after the earlier time. As we can see from
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Section 4.8, each factor of K (the two factors of K and several factors of Jn(K)) in Eq. (4.24)

enters as an independent random variable, so that the integration in (4.28) amounts to averaging

over each factor independently. The resulting generalization of (4.24) is

D(K) =
K2 + Var(δK)

4
+
K2

2
(
−J2(K) − J 2

1 (K) + J 2
2 (K) + J 2

3 (K)
)
. (4.29)

In this equation, Var(δK) denotes the variance of P (δK), and

Jn(K) :=
∫ ∞

−∞
P (δK)Jn(K + δK)d(δK). (4.30)

This expression makes it immediately clear how amplitude noise affects the diffusion rate: the

integral in Eq. (4.30) is analogous to a convolution of the Bessel functions with the noise distribu-

tion. As the noise level is increased, the Bessel functions are smoothed out, and the correlations

are effectively destroyed. This is especially true for long-term correlations, and indeed anoma-

lous diffusion is suppressed in the presence of noise. At the same time, there is an increase in

the quasilinear diffusion component, because the fluctuating kick strength leads to a fluctuating

momentum perturbation, but this effect is generally small in comparison to the destruction of

the correlations.

In the experiments, we considered exclusively the case of amplitude noise with a uni-

form probability distribution,

P (δK) =
{

1/δKp−p, δK ∈ (−δKp−p/2, δKp−p/2)
0 elsewhere, (4.31)

where δKp−p is the peak-to-peak deviation of the kick strength. When we quote the noise level

used in our experiments, we are quoting the normalized peak-to-peak deviation δKp−p/K. For

this noise, the variance, which characterized the contribution to the quasilinear diffusion, is

Var(δK) = (δKp−p)2/12, and from Eq. (4.30), the correlation contributions to the diffusion in

(4.24) are simply convolved with a “box” window. For illustration, the function (4.29) is plot-

ted for several different levels of amplitude noise in Fig. 4.3. Notice that for the 100% and

200% noise levels, the correlations are essentially destroyed, so that these noise levels cannot be

considered perturbative; however, these noise levels are still small in the sense that their contri-

bution to the quasilinear diffusion rate is significantly smaller than the zero-noise component.
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4.4.4 Finite-Pulse Effects

In a real experiment, we obviously cannot realize exact δ-kicks, but we can use short laser pulses

to work near this limit. The standard map is a valid model of the finite-pulse kicked rotor if

the motion of the atom is negligible throughout the duration of the pulse, because this situation

mimics the strobe-like nature of the δ-function pulses. This observation implies that the δ-kick

approximation is valid within a bounded interval in momentum about p = 0. We can obtain a

crude estimate for the momentum at which the δ-kick approximation breaks down by consider-

ing an atom moving with a velocity such that it travels over one period of the optical lattice over

the duration tp of the pulse. The momentum transferred to the atom is approximately zero, and

thus the momentum pb for this “boundary” is

pb
2�kL

=
mλ2

8π�tp
, (4.32)

where all quantities are in physical units. The dependence of this boundary on the atomic

mass m and the lattice wavelength λ motivated the use of a cesium-based apparatus for these
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Figure 4.3: Plot of the diffusion expression (4.29) for several levels of amplitude noise (with

uniformly-distributed statistics): no noise (solid line), 50% noise (dashed line), 100% noise

(dotted line), and 200% noise (dot-dashed line). The oscillations, which represent short-term

correlations, are smoothed out by the noise.
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experiments over the previous sodium-based apparatus, in order to realize an increase in pb/2�kL

by a factor of 12 for fixed tp.

We can make this momentum boundary effect due to finite pulses more precise by

reconsidering the form (4.19) for the kicked-rotor Hamiltonian. We can write the kicked-rotor

Hamiltonian (4.10) for finite pulses as

H(x, p, t) =
p2

2
+K cosx

∞∑
j=−∞

cje
−i2πjt , (4.33)

where the Fourier coefficient cj is given by

cj =
∫ 1

0

∑
n

f(t − n)ei2πjt dt . (4.34)

Figure 4.4: Phase-space plots for the kicked rotor with K = 10.5 in the cases of (a) δ-kicks,
(b) square pulses with pulse width tp/T = 0.014, and (c) square pulses with tp/T = 0.049.
Case (b) is similar to the pulses used in the experiments in this chapter. The effect of the finite

pulses is to introduce KAM surfaces at large momenta in the otherwise chaotic phase space.
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This Hamiltonian can in turn be rewritten as

H(x, p, t) =
p2

2
+K

∞∑
j=−∞

|cj| cos(x− 2πjt + φj) , (4.35)

where we have defined the phases of the coefficients by cj = |cj| exp(iφj), and we have used

the fact that cj = c∗−j . Also, from the definition of f(t), the coefficient c0 of the stationary term

is unity. In the case of δ-kicks, we saw that cj = 1 holds true for all the coefficients. However,

for finite pulses the Fourier weights drop off with increasing j, so that the primary resonances

are attenuated at large momentum. Larger pulse widths imply a narrower spectrum, and hence

a boundary at lower momentum, as we discovered using the simpler estimate above.

The effects of finite pulses are illustrated in Fig. 4.4, which shows the phase space for a

δ-kicked rotor compared with two phase spaces corresponding to kicks with square pulse profiles.

For the case of square pulses, we can define a momentum-dependent effective stochasticity

parameter based on the Fourier transform argument as

Keff(p) = Ksinc
(
tpp

2

)
, (4.36)

where sinc(x) = sin(x)/x, and p and tp are scaled variables. This sinc profile is especially

apparent in Fig. 4.4(c), where the phase space becomes stable as Keff drops below ∼ 1 (re-

call that the “stochasticity border” for the kicked rotor occurs near K = 1), becomes unstable

again as it drops below ∼ −1, and so on. The phase space in Fig. 4.4(b) corresponds closely to

the situation in our experiments, and from this plot it is apparent that the momentum bound-

ary occurs well outside the range of |p/2�kL| < 80 that we measure experimentally. More

details about this momentum boundary and its effects on quantum transport can be found in

[Klappauf98b; Klappauf99].

4.5 Quantum Transport

Nowwe turn to the subject of quantum transport in the kicked rotor. We introduced in Chapter 1

the dynamical localization phenomenon, where the quantum transport is in sharp contrast with

the diffusive classical transport. The main symptom of dynamical localization is that momentum
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transport is frozen after the break time tB. The underlying discrete-spectrum nature of the

quantum dynamics also makes the quantum system numerically reversible, and hence manifestly

nonchaotic, as we have also seen. In this section, we will examine several aspects of quantum

transport in the kicked rotor, including some of the effects of noise on the quantum transport,

and relate quantum and classical transport via their respective correlations.

4.5.1 Quantum Mapping

The equation of motion for the quantum δ-kicked rotor is just the Schrödinger equation,

ik̄∂t|ψ〉 = H |ψ〉 , (4.37)

where the Hamiltonian is given by Eq. (4.11). To derive a mapping for the quantum evolution,

we start with the time-evolution operator U(t, t0) (so that |ψ(t)〉 = U(t, t0)|ψ(t0)〉) for a system

with a time-dependent Hamiltonian [Berestetskii71],

U(t, t0) = T exp
[
− i

�

∫ t

t0

H(t′) dt′
]

, (4.38)

where T is the chronological (time-ordering) operator, which is necessary when H(t) does not

commute with itself at different times. Using a procedure similar to that used in the derivation

of the classical standard map, we can write the kicked-rotor evolution operator as

U(n + 1, n) = exp
(
− ip2

2k̄

)
exp

(
− iK cosx

k̄

)
, (4.39)

where the “kick” operator acts on the state vector first, followed by the “drift” operator.

The quantum mapping in the form (4.39) is particularly suitable for calculations, be-

cause each component of the operator is diagonal in either the x or p representation, and thus

is simple to apply to the wave function after appropriate Fourier transforms. Alternately, we can

express the quantum mapping entirely in the momentum basis by using the generating function

for the Bessel functions Jn(x), with the result

ψn+1(p) = exp
(
− ip2

2k̄

) ∞∑
l=−∞

ilJl(K/k̄)ψn(p − lk̄) , (4.40)
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where ψn(p) is the wave function in the momentum representation just before the nth kick.

The ladder structure in momentum space is once again apparent in this form of the mapping.

Also, since Jn(x) drops off exponentially with n for n > x, each kick couples any given state to

about 2K/k̄ other states.

Because the Hamiltonian for the kicked rotor is explicitly time-dependent, the energy

is not a constant of the motion, and therefore there are no stationary states for the system.

However, since the Hamiltonian is time periodic, we can define temporal Floquet states (or

quasienergy states), in analogy with the spatial Floquet/Bloch solutions for the eigenstates of

a periodic potential that we discussed in Chapter 2. We can write these states in an arbitrary

representation as

ψε(t) = e−iεt/k̄uε(t) , (4.41)

where uε(t) is a periodic function of time (with the same unit period as the scaled Hamiltonian),

and ε is the quasienergy of the state. These states are eigenstates of the one-period evolution

operator,

U(n+ 1, n)ψε = e−iε/k̄ψε , (4.42)

and thus are eigenstates in a stroboscopic sense, since their probability distribution is invariant

under one period of time evolution.

Before continuing with the discussion of the quantum kicked rotor dynamics, it is useful

to consider one more form for the quantum evolution equations. In the Heisenberg representa-

tion, we can integrate the Heisenberg equation of motion for the operators to obtain a map for

the operators xn and pn just before the nth kick:

pn+1 = pn +K sinxn

xn+1 = xn + pn+1 .
(4.43)

This Heisenberg map has exactly the same form as the classical standard map (4.17), but with

the classical variables replaced by quantum operators. What may seem surprising at first is that

there is no mention of the quantum parameter k̄. On iteration of the map, the sin function will

operate on combinations of x and p, generating products of these operators at all orders, and thus

Planck’s constant enters via the commutation relation [x, p] = ik̄. As we argued in Chapter 1,
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then, it is the nonlinearity that brings about quantum deviations from the classical behavior, and

we also expect quantum effects to show up after repeated iterations of the map, rather than after

a single time step.

4.5.2 Dynamical Localization

The work of Fishman, Grempel, and Prange (FGP) [Fishman82; Grempel84; Fishman96] marked

an importantmilestone in the understanding of quantum localization. In this work, FGP showed

that the quantum mapping for the kicked rotor could be written in a form that suggests a strong

analogy with the problem of Anderson localization in one dimension [Anderson58; Fishman96].

The Anderson problem considers the transport of an electron in a disordered potential, which

consists of an array of barriers with flat regions between. The barriers are characterized by trans-

mission and reflection probabilities, and classical particles that obey these particles would diffuse

spatially throughout the potential. In the quantum case, if the barriers are arranged in a peri-

odic fashion, there are certain particle energies that permit ballistic motion through the lattice

(corresponding to the Bloch states of the system). This transport is analogous to the quantum

resonance in the kicked rotor, to which we will return in Section 4.5.3. If the barriers are dis-

ordered, though, there is no resonance condition for long-range transport. In a path-summation

picture [Feynman65], there are many paths by which an electron can travel to a distant site, but

as a result of the disorder, the paths have randomphases with respect to each other and thus tend

to destructively interfere, effectively suppressing the quantum propagator for long-range tran-

sitions. The eigenfunctions in the Anderson problem are known to be exponentially localized,

as opposed to the extended Bloch states. Additionally, FGP argued that although the kicked

rotor has a dense point spectrum, the quasienergy spectrum is locally discrete in the sense that

a localized excitation in momentum leads to a discrete spectrum, as states close together in

quasienergy correspond to states that are widely separated in momentum [Grempel84].

In the Anderson-like form of the kicked rotor, the discrete “sites” are the plane-wave

states in a momentum ladder, which are coupled by the kicks. The diagonalmatrix elements that

describe the lattice-site energies are pseudorandom [Fishman96] if k̄/2π is an irrational num-
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ber (the rational case corresponds to the quantum-resonance phenomenon). In a more direct

picture, the free phase evolution exp(−ip2/2) between each kick causes the momentum-state

phases to “twist,” and the phases of widely separated momentum states become effectively

randomized by this part of the evolution for generic values of k̄. This pseudorandomness has

essentially the same effect as the disorder in the Anderson problem, and thus the kicked-rotor

Floquet states are likewise exponentially localized. This result provides a useful context for un-

derstanding dynamical localization, since the evolution to a localized state can be viewed as a

dephasing of the quasienergy states. An initial momentum distribution that is narrow compared

to a typical quasienergy state must be a coherent superposition of Floquet states. As time pro-

gresses, the precession of the phases of the basis states (each with different quasienergy) results

in diffusive behavior for short times. At long times, when the basis states have completely de-

phased, the distribution relaxes to an incoherent sum of the exponentially localized basis states,

resulting in an exponentially localized momentum distribution. For very long times, one also

expects quantum recurrences as the basis states rephase [Hogg82], but these timescales are far

beyond what we can observe experimentally.

An experimental measurement of dynamical localization is shown in Fig. 4.5. This plot

shows essentially the picture at which we just arrived: the initially narrow momentum distribu-

tion relaxes after a short time into a nearly stationary, exponential profile. The shapes of the dis-

tributions at various times are shownmore clearly in Fig. 4.6. In this semilog plot, the exponential

tails of the distribution at late times appear as straight lines. In viewing these measurements, it

is important to realize that this localization is indeed dynamical localization and not the less in-

teresting “adiabatic localization” [Fishman96], which is a result of the momentum boundary that

we described above, and is a classical effect. The clean exponential tails that we observe make it

clear that the dominant effect is dynamical localization, as adiabatic localization is characterized

by more sharply truncated tails at the momentum boundaries [Klappauf98c; Klappauf99].

The analysis that revealed the exponential nature of dynamical localization has implic-

itly assumed a kicked rotor, not a kicked particle. Since the continuous momentum space of

the particle consists of many discrete, uncoupled, rotor-like momentum ladders, the same ar-
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guments apply to each ladder separately, and we expect localization to occur in a similar way in

the experiment. In fact, if the momentum distribution is coarse-grained on the scale of k̄, the

particle momentum distribution evolves to a much smoother exponential profile than the rotor,

due to averaging over the many ladders.

4.5.3 Quantum Resonances

In the cases where k̄/2π is a rational number, themotion is of quite a different (but still distinctly

nonclassical) character. To illustrate the effect here, we consider the case of k̄ = 4π, and we

restrict our attention to the “symmetric” momentum ladder, p = sk̄ for integer s (i.e., we are

assuming a kicked rotor, rather than a particle). The kinetic energy part of the evolution operator

Figure 4.5: Experimental measurement of the momentum-distribution evolution in the kicked

rotor, showing dynamical localization. Here K = 11.5 ± 10%, T = 20 µs (k̄ = 2.077), and
tp = 0.283 µs. The nearly Gaussian initial distribution (σp/2�kL = 4.4) relaxes rapidly to an
exponential profile, which expands slowly.
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from (4.39),

exp
(
− is2 k̄

2

)
, (4.44)

collapses to unity, and the evolution operator for n kicks can be written as

exp
(
− inK cosx

k̄

)
. (4.45)

This operator is equivalent to the operator for a single super-kick with stochasticity parameter

nK. Recalling the analysis based on the expanded form (4.40) of the quantum standard map,

the wave packet in this case will have propagating edges (asymptotically) at p = ±nK. Corre-

spondingly, the kinetic energy increases as t2, which is characteristic of ballistic transport. This

phenomenon is known as a quantum resonance [Izrailev79; Izrailev80], and is related to the

Talbot effect in wave optics [Berry99].

The situation is obviously more complicated for the kicked-particle case, since the evo-

lution operator does not trivially collapse for the other momentum ladders. The other states do

not exhibit ballistic transport, but rather form a localized, Gaussian-like profile, which is nar-

rower than the corresponding exponentially localized case [Moore95]. An analytic treatment of
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Figure 4.6: Experimentally measured momentum distribution evolution, shown for 0, 10, 20, 40,
and 80 kicks (K = 11.2 ± 10%, k̄ = 2.077); the zero-kick case is the narrowest distribution,

and the 80-kick distribution is highlighted in bold. Because the vertical axis in this plot is

logarithmic, the tails of the localized (exponential) distribution appear as straight lines.
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Figure 4.7: Experimental observation of ballistic transport at quantum resonance. The evolution

of the atomic momentum distribution is plotted for the experimental measurement (a, b) and

quantum simulation (c, d). The parameters are k̄ = 4π (T = 121 µs) and K = 184. The

simulation assumed square pulses with tp = 0.295 ns, and used an initial condition constructed

directly from the experimentally measured initial distribution. In order to obtain good qualita-

tive agreement and avoid numerical artifacts, a large simulation (that averaged over an ensemble

of 50 wave packets, with centers distributed uniformly in position, and employed a grid span-

ning p/2�kL = ±256 with a resolution of ∆p/2�kL = 1/1024, binned over 2�kL for a smooth

distribution) was necessary.
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the transport in this more general case can be found in [Bharucha99]. The coexisting ballis-

tic and localized behaviors at the k̄ = 4π quantum resonance are visible in the measured and

simulated evolutions in Fig. 4.7.

Experimentally, only the low-order quantum resonances (with k̄ an integer or half-

integer multiple of 2π) cause visible deviations from localization, as the higher-order resonances

can take extremely long times to become manifest. The other low-order case that we have stud-

ied is the “antiresonance” at k̄ = 2π. For the symmetric momentum ladder, the kinetic-energy

part of the evolution operator collapses to (−1)s for the state p = sk̄, which effectively amounts

to a time-reversal operator (p → −p). In this case, an initial state on this ladder reconstructs

itself every other kick. In the general particle case, the behavior is similar to that of the k̄ = 4π

resonance [Oskay00].

4.5.4 Delocalization

We now turn to the concept of the destruction of localization in the quantum kicked rotor. As

the deviation from the classical dynamics is primarily a result of long-time quantum correlations,

dynamical localization should be susceptible to external noise and environmental interaction,

either of which would suppress these correlations. Note that noise and environmental interac-

tion are fundamentally different in nature: noise is a unitary process, and is hence reversible

in principle, whereas the latter case is an interaction with a very large (i.e., possessing many

degrees of freedom) external system (reservoir), which is an inherently irreversible process.

However, a noisy (stochastic) perturbation is the important effect of the environment, as we

argued in Chapter 1, so that from an experimental point of view, these two situations are effec-

tively equivalent. For the quantitative study of delocalization in Section 4.6, we chose to study

noise effects because of the high degree of experimental control over the noise implementation.

The first theoretical study of the influence of noise on the quantum kicked rotor appeared in

[Shepelyansky83], where it was found that a sufficiently strong random perturbation could re-

store diffusion at the classical rate. Soon thereafter, a more detailed theoretical treatment was

presented by Ott, Antonsen, andHanson [Ott84], who showed that if the scaled Planck constant
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is sufficiently small, classical diffusion is restored, even for small amounts of added noise.

In the heuristic picture presented in [Fishman96], the noise can be characterized by a

coherence time tc, beyond which quantum coherence is destroyed. In the case of weak noise,

where tc � tB, the noise restores diffusion after the break time at a rate proportional to 1/tc,

which is much slower than the initial classical-like diffusion phase. If, on the other hand, the

coherence time is less than the break time, then we expect (for small �) that localization is

completely destroyed and classical behavior is restored.

We will now examine experimental evidence that localization can be destroyed by in-

teraction with optical molasses. This situation is effectively an interaction with a dissipative

environment, which causes momentum perturbations due to the photon absorption and emis-

sion and also dissipation of kinetic energy due to the cooling effect of the molasses. The effect

on the kinetic energy evolution is plotted in Fig. 4.8 for several different values of the spon-

taneous scattering rate. Qualitatively, the energy diffusion increases with increasing scattering

rate. This increased heating cannot be explained in terms of trivial photon-recoil heating be-
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Figure 4.8: Experimental observation of decoherence due to spontaneous photon scattering in

optical molasses. The scattering probabilities are 0% (circles), 1.2% (filled triangles), 5.0%
(open triangles), and 13% (diamonds) per kick, and the kicked-rotor parameters areK = 11.9±
10% and k̄ = 2.077. Although spontaneous emission generally causes momentum diffusion and

therefore heating of the atomic sample, the optical molasses cools the atoms, as shown in the

inset, where the molasses interaction was added after the lattice kicks. Thus, the enhanced

diffusion in this dissipative case is due only to the destruction of localization.
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cause the molasses cools the distribution, and so the increased heating indicates the destruction

of localization. The corresponding effect of the molasses light on the momentum distribution

evolution is shown in Fig. 4.9. The exponential profile is again evident in the zero-noise case.

As the spontaneous emission is applied, the late-time distribution becomes rounder, taking on

a Gaussian profile in the cases of 5.3% and 13% scattering probability per kick (this seems to

disagree with [Doherty00], where it is claimed that the distributions remain “essentially expo-

nential” with scattering rates around 5%/kick).

The reader may notice in Fig. 4.8 that the late-time energy growth in the zero-noise

case, while slower than the short-time growth, is still nonzero, as we might expect from a simple

picture of localization. However, “perfect” localization is not necessarily expected over the time

scales considered in the experiment, as we can see from the quantum simulation in Fig. 1.5.
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Figure 4.9: Experimental study of how the dissipative optical molasses interaction influences

the momentum distributions in the quantum kicked rotor. The scattering rates here, 0%, 1.2%,

5.3%, and 13%, correspond closely to those displayed in Fig. 4.8. At the higher scattering rates,

the late-time distribution makes a transition from the localized exponential profile to a classical-

like Gaussian shape (which appears parabolic in these semilog plots).
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We have verified that this late-time growth is not due to the nonideal effects of the optical

lattice discussed in Chapter 2 by varying the lattice detuning while keeping V0 constant by

compensating with a corresponding lattice intensity change. The other sources of noise are

small, but it is difficult to rule out residual phase noise of the lattice (caused by mechanical

vibrations of the retroreflecting mirror) as a contribution to late-time diffusion. (Recall that we

have characterized the phase noise in the optical lattice in Section 3.4.2).

We have also studied the effects of amplitude noise in the quantum kicked rotor (we

examine these results in Section 4.6), as well as noise in the time between kicks and sponta-

neous emission from a far-detuned traveling wave applied between kicks. All of these noises

cause a similar transition from localization to classical-like diffusion at late times. The dif-

ferent types of noise should in principle be different in nature. Amplitude noise is “ladder-

preserving,” which means that atoms can still only change momentum by 2�kL at a time, even

with this perturbation. Other types of noise, such as spontaneous emission, are “nonperturba-

tive” in the sense that they can break this ladder symmetry. As a result of the interaction of the

previously uncoupled ladders, this noise can lead to more effective destruction of localization

[Cohen91; Fishman96; Cohen99]. A quantitative comparison between perturbative and non-

perturbative noises is difficult, though, and we cannot distinguish any differences based on our

current data. A clean quantitative study would probably best be accomplished with different

types of noise than we have studied, which could be for example a perturbation by a second

lattice with a different period [Cohen99] (realized by crossed but not counterpropagating laser

beams).

4.5.5 Quantum Correlations

The above analysis leading to exponential quantum localization was based on dynamically gen-

erated disorder, and therefore we might expect that correlations also play an important role in

the quantum dynamics. Shepelyansky showed numerically [Shepelyansky83] and analytically

[Shepelyanskii82] that whereas the classical correlations drop off quickly with time (when any

residual stable structures are too small to affect the dynamics on a short time scale, i.e., away
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from the accelerator modes), the quantum correlations persisted for much longer times than the

corresponding classical correlations. In contrast, for cases of smaller K (and hence more stabil-

ity), the quantum and classical correlations were similar after the break time. This difference

in the correlations is intuitively clear from Eq. (4.23). For localization, the long-time quantum

correlations near the break time must be negative, bringing this sum to nearly zero, in order for

the diffusion to freeze. For the quantum resonance case, the correlation series must have a long

positive tail, such that the sum (4.23) diverges.

Shepelyansky also made another important observation regarding the quantum correla-

tions, which will be important for the interpretation of the results presented here. In particular,

he calculated the first few quantum correlations and found that they had approximately the

same form as the corresponding classical correlations upon the substitution [Shepelyansky87;

Shepelyanskii82; Cohen91]

K −→ Kq :=
sin(k̄/2)
k̄/2

K . (4.46)

(Note, however, that the correlations used in [Shepelyansky87] were defined without the factor

ofK2 that appears in Eq. (4.21).) Hence, a good approximation for the initial quantum diffusion

rate in the absence of noise is

Dq(K, k̄) =
K2

2

(
1
2
− J2(Kq)− J 2

1 (Kq) + J 2
2 (Kq) + J 2

3 (Kq)
)

, (4.47)

where, as in the classical calculation, it is assumed that the initial quantum distribution is uni-

form over the unit cell in the classical phase space. Consequently, there is an oscillatory de-

pendence of the initial quantum diffusion rate on Kq that is closely related to the underlying

classical dynamics. However, the oscillations are shifted due to the quantum scaling factor in

(4.46). Since the width of the localized distribution (the localization length) is related to the

initial diffusion rate by the heuristic/numerical result [Shepelyansky87; Fishman96],

tB ≈ ξ =
Dq

k̄2
(4.48)

(where ξ is the localization length of the Floquet states, so that the momentum probability

distributions have the form exp[−|p − p0|/(ξ/2)]), these oscillations are also apparent in the

long-time quantum distributions.
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This oscillatory structure and the confirmation of the quantum scaling is shown in

Fig. 4.10, where the experimentally measured energy is plotted for a fixed interaction time as a

function ofKq. The correct quantum scaling causes the oscillations in these curves to match for

different k̄. At the maxima of these curves, the late-time momentum distributions are not ex-

ponential, having more of a curved profile in the tails, as shown in Fig. 4.11. This effect is likely

an influence of the accelerator modes and possibly other stable structures. Theoretical work has

shown that classical anomalous transport enhances fluctuations in the Floquet-state localization

lengths [Sundaram99a], and the deviations of the quasienergy states from a purely exponential

shape may also be due to classical correlations [Satija99]. We will also return to this issue of the

late-time distribution shape in Section 4.7.

Notice that to reach the classical limit in our experiment, the short-term correlations

must also be modified by the noise. This is especially true in view of the shift caused by the

quantum scaling factor in (4.46), which shifts the diffusion oscillations by about 20% in K for

Figure 4.10: Experimental verification for the scaling of Kq. The measured ensemble kinetic

energy is plotted for a fixed time as a function of the rescaled stochasticity parameter for several

values of k̄. The measurement times are 35 kicks (k̄ = 1.04, 1.56, 2.08, 3.12, 4.16), 28 kicks

(k̄ = 5.20), and 24 kicks (k̄ = 6.24). The solid line is a plot of the classical (standard map)

diffusion rate, Eq. (4.24). The locations of the oscillatory structures match well when plotted in

terms of the rescaled K, supporting the validity of the Kq scaling.
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the typical experimental value k̄ = 2.08 in the experiments here. It is possible to generalize the

work of Shepelyansky leading to Eq. (4.47) to include amplitude noise in essentially the same

way as in the classical calculation, with the result (see Section 4.8 for details)

Dq(K, k̄) =
K2 +Var(δK)

4
+
K2

2
(
−Q2(Kq)−Q 2

1 (Kq) +Q 2
2 (Kq) +Q 2

3 (Kq)
)
, (4.49)

where

Qn(Kq) :=
∫ ∞

−∞
P (δK)Jn(Kq + δKq)d(δK), (4.50)

and δKq = δK sin(k̄/2)/(k̄/2). Thus, the short-time quantum correlations are washed out in

much the same way as the classical correlations, as in Eq. (4.29). However, since the locations

of the classical and quantum oscillations in D(K) are different for our operating parameters,

we can conclude that in order to observe good correspondence between quantum and classical

evolution, the applied noise must be very strong (i.e., we must have tc on the order of one kick,

so that all the higher-order correlations are destroyed). In this case, both quantum and classical

diffusion will proceed at the quasilinear rate, since the diffusion oscillations will be destroyed (as
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Figure 4.11: Experimentally measured momentum-distribution evolution, shown for 0, 10, 20,
40, and 80 kicks. In this plot,K = 8.4±10%, k̄ = 2.077, corresponding to a peak in the quantum
diffusion curve (as in Fig. 4.10). The zero-kick case is the narrowest distribution, and the 80-

kick distribution is highlighted in bold. The late-time distribution is qualitatively different from

the exponentially localized case in Fig. 4.6, which corresponds to a minimum in the quantum

diffusion curve.
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in Fig. 4.3), and the global behavior will be the same. For lower levels of noise, we might expect

to recover diffusive behavior in the quantum system (if the long-time correlations responsible

for localization are destroyed), but possibly at a rate that does not match the classical prediction.

Heuristically, in the picture of [Ott84; Cohen91], the noise causes diffusion in momentum at a

rate 2D, and we can expect coherence to be broken when diffusion occurs on the scale k̄ between

neighboring momentum states, so that

tc =
k̄2

2D
. (4.51)

For the case of uniformly distributed amplitude noise, this estimate becomes

tc =
24k̄2

(δKp−p)2
. (4.52)

We can insert some values corresponding to the data to be analyzed in Section 4.6.2.1, where

K = 11.2 and k̄ = 2.08. In order to break localization, we must have tc ∼ tB, which is around

10 kicks in the experimental data, thus requiring about 30% amplitude noise. To obtain good

correspondence, however, requires tc ∼ 1 for quasilinear diffusion, and thus the higher noise

value of around 90%. These simple estimates are in reasonable agreement with the experimental

data.

4.6 Quantitative Study of Delocalization

Up to this point, we have shown that noise can lead to a loss of localization, with distributions

that have a classical form. However, we have not yet addressed the more interesting question

of whether the experimental data match the classical prediction in the presence of noise. An-

swering this question in a quantitative way requires a nontrivial amount of effort in carefully

modeling the experiment in order to make an accurate classical prediction for comparison with

the experimental data.

4.6.1 Classical Model of the Experiment

In order to facilitate an accurate comparison of the experimental data to the classical limit of

the kicked rotor, we have performed classical Monte Carlo simulations of the experiment. In
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these simulations, a large number (2 × 105) of classical trajectories were computed, each with

a distinct realization of amplitude noise; momentum distributions and ensemble energies were

then extracted from this set of trajectories. Additionally, we accounted for several different

systematic effects that were present in our experiment, in order to provide the best possible

classical baseline for comparison with the experimental data. In the remainder of this section

we describe in detail each of the systematic effects that we have accounted for and how we have

included them in the comparison of the data to theory.

The effects that we will describe in this section are illustrated in Fig. 4.12. This plot

compares the energy evolution for different cases where different corrections are accounted for.

As each correction is (cumulatively) taken into account, the resulting energy curve is lower and

less linear. Indeed, there is quite a large difference between the uncorrected, linear δ-kick curve

that one might expect to observe and the fully corrected curve. The importance of this rather
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Figure 4.12: Example of how the systematic effects described in the text can affect the mea-

sured energies. Shown are the simulated average energy evolution for typical operating pa-

rameters (K = 11.2, 100% noise level) and typical parameters for the systematic corrections.

The solid curve is the ideal case, corresponding to the δ-kicked rotor with no corrections; the

successively lower curves represent the cumulative result as each effect is accounted for (in

the order of presentation in the text): nonzero pulse duration (dashed), MOT (detection)

beam profile (long dot-dash), clipping due to width of CCD chip (dotted), profile of interac-

tion beam/transverse atomic motion (long dashes), correction for free-expansion measurement

(dot-dash), and vertical-offset bias (thin solid).
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technical discussion of experimental details is clear: without carefully taking into account these

systematic effects, one might mistakenly attribute curvature in the experimental energy data to

residual quantum localization effects. It is also important to emphasize that these effects cause

a reduction in the dynamic range of the experimental measurements, but they do not change

the underlying physics in a fundamental way. Finally, we note that most of these systematic

effects are such that it is either impractical or impossible to compensate for them with a simple

correction to the experimental data. In this sense, the “energies” that we use in our comparisons

are not true energies, but relatively complicated functions of the true energies and many other

experimental parameters. It is therefore the ability to take these effects into account in the clas-

sical simulations that allows for a meaningful quantitative comparison between our experiment

and classical theory.

The first, and perhaps most important, effect that we account for is the detailed pulse

shape f(t) of our kicks. The nonzero temporal width of the pulses leads to an effective re-

duction in the kick strength at higher momenta, as we discussed in Section 4.4.4, and so it is

important to accurately model the experimental pulses in order to reproduce the correct tails in

the momentum distributions. It turns out that our experimental pulses are well modeled by the

function

f(t) =
1

2ηerf

[
erf

(
(t − t1)

√
π

δt1

)
− erf

(
(t− t2)

√
π

δt2

)]
, (4.53)

where t2 − t1 = 295 ns is the full width at half maximum (FWHM) of the pulse, δt1 = 67 ns

is the rise time of the pulse (defined such that a straight line going from 0 to 100% of the pulse

height in time δt1 matches the slope of the rising edge at the half-maximum point), δt2 = 72 ns,

erf(x) :=
2√
π

∫ x

0

exp(−t2)dt (4.54)

is the error function, and ηerf is a normalization factor, which takes the value t2 − t1 for small

values of δt1,2/(t2 − t1). The function (4.53) is plotted along with a measured optical pulse in

Fig. 4.13. The rise and fall times in the pulse were mainly due to the response time of the switch-

ing AOM for the Ti:sapphire laser beam and the rise time of the SRS DS345 arbitrary-waveform

synthesizer that drives the AOM controller. It should be noted that although the agreement be-

tween the pulse model and the experimentally measured pulses is excellent, Eq. (4.53) is merely
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an empirical model of our observed pulse profiles. In the simulations, the classical equations of

motion were directly integrated, using Eq. (4.53) for the kick profile.

The next effect that we consider is due to the Gaussian profile of the optical molasses

laser beams. Recall that to measure momentum distributions, we imaged the light scattered by

the atoms from the molasses beams after a free-expansion time. Since the light was not uniform

over the atomic cloud, the scattering rate due to atoms with momentum p is given by

Rsc = N(p)
(
Γ
2

)
(I(x)/Isat)

1 + 4 (∆/Γ)2 + (I(x)/Isat)
, (4.55)

where N(p) is the number density of atoms with momentum p, I(x) is the local intensity

at spatial position x, Γ is the excited state decay rate, and Isat is the saturation intensity

(= 2.70 mW/cm2 for approximately isotropic pumping on the trapping transition). Also, in

the free expansion measurement, the unscaled variables x and p are related by

x = vr(p/�kL)tdrift , (4.56)

where vr = 3.5 mm/s is the velocity corresponding to a single photon recoil, and tdrift is the

free drift time of the momentum measurement. The spatial intensity profile of the six beams is
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Figure 4.13: Model function (4.53) for the experimental pulses (dashed line) compared to an

actual experimental pulse as measured on a fast photodiode (solid line). The two curves are

nearly indistinguishable.
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given by

I(x) = 2I0
[
e−2x2/w 2

0 + 2e−(x
2+2z2)/w 2

0

]
, (4.57)

where I0 is the intensity at the center of one of the six beams, w0 = 11 mm is the beam-

radius parameter of the Gaussian beams, z is the vertical position of the atoms (transverse to

the standing wave, in the direction of gravity), the first term represents the two vertical beams,

and the last term represents the four horizontal beams, each at 45◦ to and in the horizontal

plane with the standing wave. To account for this effect, we applied a correction to the classical

simulation of the form

fmol(x) =
fI(x)

c2 + fI(x)
, (4.58)

where fI(x) = I(x)/2I0 is a scaled intensity profile, and c2 = [1 + 4(∆/Γ)2][Isat/(2I0)]. The

value of c2 was determined to be 5.94 by fitting the correction (4.58) to a known exponentially

localized distribution for various drift times; this value is in reasonable agreement with the ex-

pected value of c2 from the laser parameters.

The finite extent of our imaging CCD camera chip also had an impact on our measure-

ments. We set up our imaging system such that a typical localized distribution was just contained

within the imaged area after a 15 ms drift. For strongly noise-driven cases, though, the momen-

tum distribution could extend significantly past the edges of the imaged area. This effect had

little impact on the measured momentum distributions, since it only restricted the measurable

range of momentum. However, the energies computed from this momentum distribution are

sensitive to this truncation, even if the population in the truncated wings is small. The result is

a systematic reduction in the measured energy. It was straightforward to model this effect in the

simulations by rejecting trajectories that fall outside the experimental window.

Another effect that we accounted for is the transverse position of the atoms in the

standing-wave beams. Although the spatial size of the beam (with 1/e2 radius w0 = 1.5 mm)

was large compared to the size of the initial MOT cloud (σx = 0.15 mm), the variation in

kick strength over the atomic distribution must be accounted for, especially as the evolution

progresses and the atoms move further out transversely. Hence each atom sees an effective kick
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strength of Kmax exp[2(y(t)2 + z(t)2)/w2
0 ], where the transverse coordinates y and z are given

in scaled units by

y(t) = y0 + py0t
z(t) = z0 + pz0t− gt2/2 .

(4.59)

In these equations, we have used the scaled gravitational acceleration g, which is related to

the acceleration in physical units by g = 2kLT 2gphys. In the simulations, each particle was

given initial transverse positions y0 and z0 according to a Gaussian distribution that matched the

measured MOT size, and initial momenta py0 and pz0 that matched the momentum distribution

measured along the standing wave. It should be noted that this correction may actually increase

or decrease the final energies compared to an uncorrected simulation using the mean value of

K, even though the mean value of K effectively decreases with time. This is because a subset

of the atoms may completely dominate the diffusion if they are located more closely to one of

the maxima of D(K). For the beam waist/MOT size ratio used here, there is a spread in K of

around 5% in our initial distribution.

We additionally accounted for a systematic effect that occured in our free-expansion

measurement technique. This technique relied on allowing the atomic cloud to expand freely

for 15 ms after the interaction with the standing wave in order to convert the spatial distribu-

tion of the atoms into an effective momentum distribution. However, the interaction with the

standing wave lasted as long as 1.6 ms for these experiments. Since we define the drift time as

the time from the beginning of the standing-wave interaction to the beginning of the camera

exposure, the drift time effectively becomes smaller as the number of kicks in the experiment

increases. There is no simple way to directly correct for this effect, so we included this effect

in our simulations by simulating the free-expansion process. The initial spatial distribution was

chosen (in scaled units) to be uniform in the range [−π, π), which is extremely small compared

to the spatial distribution after the expansion. We did not choose the distribution from the

MOT spatial distribution to account for convolution effects; these effects have been approxi-

mately accounted for already, since the initial momentum distribution used in the simulations

is the measured momentum distribution, which was already convolved with the initial spatial

distribution. Then the effective momentum of each particle measured by the free-expansion
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method is given by

peff(t) = x(t) +
(
tdrift − t

tdrift

)
p(t) , (4.60)

where all quantities in this equation are scaled.

The final effect that we took into account was due to variations in the background lev-

els measured by the data acquisition (Princeton Instruments) camera. Although we performed

background subtraction, which greatly improved our signal-to-noise ratio, the offset levels after

the subtraction were generally nonzero, due to fluctuations (from drifts in the camera electron-

ics) and constant offsets (from physical effects in the imaging of the atomic cloud). To enhance

the reproducibility of our data, we used the following procedure to fix the zero level of our

measured distributions: the 40 lowest points (out of 510 total) in the distribution were aver-

aged together and defined to be the zero level. The disadvantage of this technique is that it

resulted in a slight negative bias in the offset level from the “true” distribution. For typical mea-

surements of localized distributions, the bulk of the distribution was contained well within the

imaged region. In these cases, the measured values near the edges of the imaged region were

small compared to those in the center of the distribution, and the error in the offset was neg-

ligible. However, for strongly noise-driven cases, a significant fraction of the distribution could

fall outside the imaged region, as noted above. In these cases, the lowest 40 values were then

significantly different from the true zero level, and our procedure introduced a significant bias.

It was straightforward to mimic this process in the simulations, but in some data sets it was pos-

sible to restore the correct offset level. For our typical studies of the transition from localized to

delocalized behavior, the only cases that were significantly biased are the strongly noise-driven

cases, which behaved essentially classically (as we will see later). Then one can assume that the

biased cases can be modeled as Gaussian distributions, with the MOT beam profile correction

applied to them, and obtain the correct offset by fitting the model function to the measured dis-

tribution. This ansatz was justified by the essentially perfect fit of the model function whenever

its use was appropriate. Using this idea, we implemented an automatic procedure for restor-

ing the correct offset in the data sets where the procedure was sensible (Figs. 4.15-4.20). In

other data (Fig. 4.14), such as measurements of exponentially localized distributions with very
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long localization lengths, such a procedure was clearly inappropriate, and this effect was instead

accounted for in the corresponding simulations.

There are a few other effects that we did not account for in the simulations, including

spontaneous emission, the stochastic dipole force, collisions between atoms, and other sources of

noise, most notably phase jitter in the standing wave (we have discussed all these effects in more

detail in Chapter 2). These effects cause decoherence, but they were sufficiently weak that at

low levels of applied amplitude noise, quantum effects were easily observed, and at high ampli-

tude noise levels, the applied noise dominated any effects that these other processes might have

had. Thus, these effects did not hinder our ability to study quantum-classical correspondence in

our system.

We also note that the corrections we have mentioned lend themselves well to classical

Monte Carlo simulations, whereas with other methods it would be quite cumbersome to take

the many aspects of the experiment into account. A similar, quantum-mechanical analysis is

much more difficult, however, as one would need to average over many wave packets in a Monte

Carlo approach to obtain good convergence, and the evolution for a single quantum wave packet

requires much more computation than for a single classical particle.

4.6.2 Data and Results

In this section we will explore a detailed experimental study of the quantum kicked rotor dynam-

ics in the presence of amplitude noise, using the classical model for comparison. An overview of

these results appears in Fig. 4.14, where the energies from the experiment and classical model

are shown as a function of the kick strengthK, for four different levels of amplitude noise. The

energies are plotted at the fixed time of 35 kicks. In the case of no applied noise, one can clearly

see the oscillations that correspond to Eqs. (4.24) and (4.47). Additionally, the shift in the lo-

cations of the experimental oscillations from their classical counterparts is evident; for the value

of k̄ = 2.08 used in all the experiments shown here, the shift is 20% above the classical value.

Although in some locations the quantum (experimentally observed) energies are larger than the

classical (numerically calculated) energies due to the shift of the oscillations, the experimen-
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Figure 4.14: Plot of the experimentally measured energy (points connected by solid lines) and

energy from the classical model (dashed line) as a function of the stochasticity parameterK, for

several different levels of applied amplitude noise. All the plotted energies are measured at the

fixed time of 35 kicks. The oscillations and the shift due to quantum effects, corresponding to

Eqs. (4.24) and (4.47) with k̄ = 2.08, are evident in the case with no applied noise. On average,
the experimental energies at the lower noise levels are smaller than their classical counterparts

due to localization effects. However, for the strongest noise level shown here (80%), there is

good agreement between the two energy curves. For this figure, no adjustments have been made

to the measured values of K, and the error bars for the energy values are suppressed, but are

typically smaller than the corresponding dots. Each experimental point is an average over 10
realizations of amplitude noise. Two arrows in the zero-noise case mark the locations of detailed

study that are described in the following two subsections.
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tal energies are smaller on average than the classical energies because of quantum localization

effects.

As the noise is added, the oscillations in the energy curves become washed out, as one

expects from Eqs. (4.29) and (4.49). Additionally, the difference between the experimental

and classical curves becomes less apparent, until the highest noise level (80%), where there is

excellent agreement between the two curves. In accordance with our previous discussion, good

correspondence only occurs when the noise level is sufficiently large to destroy the short-time

quantum and classical correlations, and hence the oscillations in the diffusion curves.

To fill out this picture of the kicked-rotor behavior, detailed views of the experimental

and classical dynamics at two values of K appear below. The two values of K in these de-

tailed measurements correspond to a minimum and a maximum of the quantum energy curve in

Fig. 4.14; these locations are indicated as arrows in the zero-noise plot in this figure. As we men-

tioned above, the dynamics are qualitatively different at these two locations. At the minima of

the experimental diffusion curve, exponential localization occurs. However, at the maxima, the

late-time distributions that we measured in our experiment are nonexponential; this behavior is

a fingerprint of the underlying classical anomalous diffusion.

In Figs. 4.15-4.20, we contrast the behavior of the experimental and classical systems at

these two values of K. The behaviors at small noise levels have several interesting differences,

but as we have already seen, the behavior at high noise levels is similar in that there is good

correspondence between the experiment and the classical simulations. In Figs. 4.15 and 4.18,

we see the behaviors of the energies at the minimum andmaximum of the experimental diffusion

curve, respectively, at a fixed time (50 kicks) as the level of noise varies. The time evolutions of

the energies are shown in Figs. 4.16 and 4.19 for the two values of K at various levels of noise.

Finally, the corresponding evolutions of the momentum distributions themselves are shown in

Figs. 4.17 and 4.20. We will discuss these results for the two values of K separately in the

following presentation.

Before proceeding, though, a few remarks are in order about the comparisons between

the experiment and the corresponding classical dynamics performed in this paper. The classical
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model contains many experimental parameters beyond the two that are really important for the

quantum kicked rotor dynamics (K and k̄). For the purposes of comparison, these extra param-

eters were not treated as fitting parameters; instead, they were all fixed to their experimentally

measured values. However, the stochasticity parameter K, which is by far the largest source

of uncertainty in the experiments, was sometimes adjusted by a few percent from its measured

value (but well within the experimental uncertainty of ±10%) in order to obtain better corre-

spondence. To be precise about these adjustments, the measured values of K are quoted in

each figure caption along with the value used in the classical simulations. Finally, as noted be-

fore, although statistical errors for our energy measurements are quoted in each figure, they are

of limited utility in determining the quality of the correspondence between the experimental

results and classical simulations. The main reason for this statement is the long-term optical

alignment and laser drifts that result in long-term drifts in K, which can result in local system-

atic shifts in energies between different curves (or even points within a curve) in each figure.

This effect is not properly accounted for by either the statistical error estimates or the simula-

tions, which used a single value ofK for an entire data set. For example, in Figs. 4.16 and 4.19, it

is not possible to distinguish different levels of agreement between the data and simulations for

the 60-200% noise levels, although some pairs of curves may appear to agree more closely than

others. Indeed, it is important to realize that the momentum distributions are the most reliable

tool for studying correspondence, since they contain much more information and tend to be less

sensitive to the problems we have mentioned. The energies, on the other hand, are still valuable

as a concise summary of the large amount of information presented here.

4.6.2.1 Detailed Study: Destruction of Exponential Localization

We now focus on the behavior at the minimum of the experimental diffusion curve, as indicated

by the rightmost arrow in Fig. 4.14. In this regime, the atoms localize in an exponential distribu-

tion at late times. In Fig. 4.15, there is a large difference between the experimental and classical

energies after 50 kicks when no noise is applied. This difference is due to both dynamical local-

ization and the misalignment of the quantum and classical diffusion oscillations, which gives the

classical system a larger initial diffusion rate. As noise is added, both the experimental data and
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the classical simulations exhibit increased diffusion, as the short-time correlations are washed

out. The increase in the experimental diffusion is larger than the classical diffusion because

quantum localization is destroyed. At high noise levels, the agreement between experiment and

classical simulation is good. Additionally, both curves exhibit a characteristic dip in the energy

around 150% noise levels. This somewhat surprising effect is a result of residual short-time cor-

relations, which persist at noise levels as high as 100%, where they enhance diffusion slightly

above the quasilinear value.

Similar behavior occurs in the time evolution of the energies shown in Fig. 4.16. When

there is no applied noise, the experimental energy grows initially more slowly than the classical

energy, and then saturates and diffuses slowly. As we noted before, this slow diffusion may be

due to residual decohering effects in our experiment, such as phase noise in the standing wave.

As noise is added, the diffusion is enhanced in both cases, and for high noise levels the energy

100

150

200

250

300

350

400

0 50 100 150 200

en
er

gy

noise level (%)

  

(p
/2

hk
L
)2

/2

Figure 4.15: Experimentally measured energy (points and solid lines) and energy from the classi-

cal model (dashed line) as the noise level is changed, for a fixed time (50 kicks) and stochasticity
parameter (the experimental value is K = 11.2± 10%, the classical simulation corresponds to

K = 10.9). At the lowest noise levels, there is a significant difference between the experimental

and classical energies, due to both localization and differences in short-term correlations, which

disappears for high noise levels. The error bars represent statistical scatter among the 18 noise
realizations comprised in each point, but do not account for long-term drifts or systematic un-

certainties (see note in text). The value of K used here corresponds to the rightmost arrow in

Fig. 4.14.
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Figure 4.16: Experimentally measured energy (points and solid lines) and energy from the classi-

cal model (dashed line) as a function of time, for various levels of applied noise. The experimen-

tally measured stochasticity parameter is K = 11.2 ± 10%, and the simulation corresponds to

K = 11.2. The experimental data points are averages over 15 distinct realizations of amplitude

noise, and data for successive noise levels are offset vertically by 200 for clarity. The agreement

between the experimental data and the classical model is excellent for noise levels of 60% and

above. The value ofK used here corresponds to the rightmost arrow in Fig. 4.14.
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growth in the experiment is quite similar to that observed in the simulations.

Finally, the transition to classical behavior in the experiment is most dramatically evi-

dent in the momentum distributions in Fig. 4.17. In the zero-noise case, the experimental distri-

bution evolves from the initial, nearly Gaussian form to the exponentially localized distribution

(shown in bold), which is characteristic of dynamical localization. The classical distribution,

on the other hand, evolves to the broader, Gaussian distribution that one expects from classical

physics. When a small amount of noise (20%) is applied, the final experimental distribution

is broader and has a rounded appearance, but is still quite far away from the classical Gaussian

distribution. With 40% noise, the final experimental distribution has made the transition to

a Gaussian profile, but the evolution still does not quite match that of the classical evolution.

For the highest levels of noise shown (60-200%), the evolutions of the experimental and classi-

cal distributions are nearly identical, providing strong evidence that the experiment is behaving

classically.

4.6.2.2 Detailed Study: Regime of Classical Anomalous Diffusion

We now focus on a different regime than in the last section. Here we consider the behavior at

a peak in the experimental diffusion curve, indicated by the leftmost arrow in Fig. 4.14. This

location in the diffusion curve corresponds to a regime of classical anomalous diffusion. As in

the previous case, there is a significant difference in the energy after 50 kicks in the absence of

noise, as seen in Fig. 4.18. The difference in this figure is much larger than in Fig. 4.14 because

of the much later time used in the plot (50 vs. 35 kicks). As noise is applied, the experimental

energy increases. This behavior is consistent with the breaking of localization, although it is not

completely clear that localization occurs in this regime, because of the nonexponential form of

the long-time momentum distributions. By contrast, the classical energy is initially reduced by

the applied noise, due to the destruction of the classical correlations. Again, for high noise levels

the behavior in the experiment is well described by the classical model.

From the evolution of the energies in Fig. 4.19, we see that the differences between the

behaviors of the atoms and the classical model are more subtle than in the case of the previous
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section. When there is no applied noise, the experimental data show a faster initial diffusion

than one would expect classically; at later times, the diffusion seems to saturate, suggesting that

localization effects are setting in, and the diffusion proceeds more slowly than in the classical

model. The energy difference in this case is smaller than one might expect from Fig. 4.18, due

to slight differences in the intensity and beam diameter of the kicking laser light between the

two data runs (notice that this value ofK corresponds to a steeply sloped region in the classical

diffusion curve). As noise is added, the saturation is less pronounced, until the 40% noise level,

where the diffusion occurs more quickly than in the classical model, with little indication of

saturation. Above this level, the experiment agrees well with the classical model, and the short-

time correlations are evidently small.

The momentum distributions for this case are shown in Fig. 4.20. In the zero-noise case,

the experimental distribution after 70 kicks (highlighted in bold) has a characteristic profile,
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Figure 4.18: Experimentally measured energy (points and solid lines) and energy from the classi-

cal model (dashed line) as the noise level is changed, for a fixed time (50 kicks) and stochasticity
parameter (the experimental value is K = 8.4 ± 10%, the classical simulation corresponds to

K = 8.4). As in the case of Fig. 4.15, there is a large discrepancy between the experimental and

classical energies at the lowest noise levels, which disappears for high noise levels. Experimental

data are averaged over 18 realizations of noise. The value of K used here corresponds to the

leftmost arrow in Fig. 4.14. Note the larger discrepancy for zero noise in this figure, since the

time displayed here is later than that used in Fig. 4.14. Note also that the vertical scale used

here is magnified compared to that of Fig. 4.15.
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Figure 4.19: Experimentally measured energy (points and solid lines) and energy from the clas-

sical model (dashed line) as a function of time, for various levels of applied noise. The experi-

mentally measured stochasticity parameter isK = 8.4±10%, and the simulation corresponds to

K = 8.7. The experimental data points are averages over 15 distinct realizations of amplitude

noise, and data for successive noise levels are offset vertically by 200 for clarity. The agreement

between the experimental data and the classical model is again excellent for noise levels of 60%
and above. The value ofK used here corresponds to the leftmost arrow in Fig. 4.14.
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rounded and nonexponential in shape. One might be tempted to attribute this shape to the

systematic effects that we have discussed, which affect the tails of an exponential distribution

with a very long localization length. However, the region over which the distribution is rounded

is well within the domain where the systematic effects are not significant. The final classical

distribution also has tails that extend well beyond those of the experimental measurement. As

noise is introduced, the experimental profile becomes more Gaussian, and the classical diffusion

rate is reduced slightly. As in the previous section, the final experimental distribution for 40%

noise is Gaussian, but the evolution does not quite proceed at the same rate (as one can most

readily see from the distributions at intermediate times). The difference, though, is that the

quantum diffusion occurs more quickly than the classical expectation, whereas in the previous

section the diffusion occurred more slowly than in the classical model. Again, for the highest

levels of noise shown (60-200%), the experimental evolutions are in excellent agreement with

the classical model, and hence classical behavior is restored.

4.7 Comparison with a Universal Theory of Quantum Transport

Beyond examining the problem of quantum–classical correspondence, these experimental results

are also useful for studying details of quantum transport. Specifically, we can compare these

results with a recent quantum diffusion theory by Jianxin Zhong, Roberto Diener, Qian Niu, and

others [Zhong01]. This theory concerns the shape of the tails of a spreading quantum wave

packet, described by the stretched exponential function

P (x, t) ∼ exp(−|x/w|γ) , (4.61)

where w(t) is the time-dependent width parameter. The exponent γ here is stationary, and is

within the range [1,∞). This diffusion theory then relates this exponent to the scaling exponent

for the width parameter,

w(t) ∼ tβ , (4.62)

via the universal relation

γ = 1/(1− β) . (4.63)
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This relation is expected to hold for lattice-type models with Schrödinger equations of the form

i∂tψ(n, t) = V (n)ψ(n, t) +
∑
n′

h(n, n′)ψ(n′, t) , (4.64)

where ψ(n, t) is the amplitude at the nth lattice site, V (n) is the lattice-site potential energy,

and h(n, n′) is the “hopping integral,” which describes the couplings between the sites (for the

common “tight-binding” models, only nearest-neighbor sites are directly coupled). As we men-

tioned above, the kicked rotor can be written in this form, where the lattice describes the ladder

in momentum space, and so this spatial-diffusion picture describes the momentum transport in

the kicked rotor. This theory has been justified on the basis of numerical simulations in a variety

of systems, as well as a general theoretical argument based on a stationary-phase approximation

in the coarse-grained generalized master equation [Zhong01], and is valid asymptotically in the

tails of the distributions at long times.
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Figure 4.21: Comparison of the diffusion theory in Eqs. (4.61-4.63) to the experimental momen-

tum distribution evolution, for the exponentially localized case. The experimental distributions

forK = 11.2, k̄ = 2.08, and times of 30, 40, 50, 60, and 70 kicks are shown as solid lines, and the
simultaneous best fit to the tails of all the distributions is shown as dashed lines. The 70 kick
cases are highlighted in bold. The fitted exponents here are γ = 1.06±0.19 and β = 0.06±0.17,
in good agreement with the expectations for dynamical localization.
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This theory makes sense in several situations that we have already discussed, such as

exponential localization (γ = 1, β = 0), noise-induced (classical-like) diffusion (γ = 2, β =

1/2), and ballistic transport (γ → ∞, β → 1). What is more interesting, though, is that the

universal relation should also hold in the intermediate cases of “quantum anomalous diffusion.”

Since we have observed a case of quantum transport (the behavior at the peaks of the diffusion

curves, as in Fig. 4.11) that does not fall cleanly in any of the extreme cases, it is interesting to

use this theory to study this case.

To compare the theory with the experimental results, we have performed fits of the

distributions (4.61) to experimental distributions at 30, 40, 50, 60, and 70 kicks. To focus on

the asymptotic behavior, we excluded the data at the earlier times (0, 10, and 20 kicks), and the

center portions of the data (bounded by |p/2�kL| ∼ 15) were also excluded. The distributions
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Figure 4.22: Comparison of the diffusion theory in Eqs. (4.61-4.63) to the experimental mo-

mentum distribution evolution, for a case driven by 200% amplitude noise. The experimental

distributions forK = 11.2, k̄ = 2.08, and times of 30, 40, 50, 60, and 70 kicks are shown as solid
lines, and the simultaneous best fit to the tails of all the distributions is shown as dashed lines.

The 70 kick cases are highlighted in bold. The fitted exponents here are γ = 2.03± 0.14 and
β = 0.51± 0.03, consistent with normal (classical) diffusion.
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were likewise truncated outside |p/2�kL| ∼ 70 to exclude the regions of poor signal-to-noise ra-

tio that might have skewed the fits. All the distributions for a given case were fit simultaneously,

using a common fitting exponent γ. The scaling relation (4.62) was enforced by the constraint

w(t) = w0 + αtβ , (4.65)

where w0 and α are fitting parameters, and β was constrained by the relation (4.63). In the fit,

each distribution was convolved with the initial momentum distribution and then corrected for

the known response of the detection system (i.e., the nonuniformity of the Gaussian imaging

laser beams). To account for shot-to-shot variations in the backgrounds of the CCD camera pho-

tographs, it was necessary to include the vertical offsets and the amplitudes of the distributions

as fitting parameters. The fits were stabilized by constraining vertical offsets to a two-parameter

linear model and the amplitudes to a three-parameter quadratic model; these constraints were
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Figure 4.23: Comparison of the diffusion theory in Eqs. (4.61-4.63) to the experimental mo-

mentum distribution evolution, for the case influenced by classical anomalous transport. The

experimental distributions for K = 8.4, k̄ = 2.08, and times of 30, 40, 50, 60, and 70 kicks

are shown as solid lines, and the simultaneous best fit to the tails of all the distributions is

shown as dashed lines. The 70 kick cases are highlighted in bold. The fitted exponents here are

γ = 1.48± 0.16 and β = 0.32± 0.07, consistent with quantum anomalous diffusion.
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justified on physical grounds and on the basis of fits where these parameters were treated in-

dependently. The other effects discussed in Section 4.6.1 were not explicitly accounted for,

and thus influenced the vales of the fitted parameters. In order to emphasize the tails of the

distribution during the fit, the logarithms of the data were computed before being sent to the

Marquardt-Levenberg fitting routine. The uncertainties quoted here primarily reflect the sen-

sitivity of the fits to the choice of cutoff locations.

We have applied this fit to three sets of data. The first corresponds to exponential

localization (Fig. 4.21), where the fitted exponents were γ = 1.06± 0.19 and β = 0.06± 0.17.

These values are consistent with the expected values. The second case is the strongest case

(200%) of amplitude noise that we considered above (Fig. 4.22), where the fitted values of

γ = 2.03 ± 0.14 and β = 0.51 ± 0.03 are also consistent with the expected values for regular

diffusion. Finally, in the regime of classical anomalous diffusion (Fig. 4.23), the fitted values were

γ = 1.48± 0.16 and β = 0.32± 0.07, indicating intermediate behavior of quantum anomalous

diffusion. In all three cases, the tails of the experimental distributions match very well with the

fitted distributions.

4.8 Calculation of the Correlations

We will now run through the calculation of the correlations that we have used in this chapter.

These correlations were calculated using probabilistic methods [Rechester80], including an el-

egant path-summation method [Rechester81], but here we will follow the direct approach used

by Shepelyansky [Shepelyanskii82] for calculating the quantum correlations.

4.8.1 Classical Correlations

Beginning with the generalized standard map,

pn+1 = pn +Kn sinxn

qn+1 = qn + pn+1 ,
(4.66)

which allows for different kick strengths on each iteration, we wish to calculate the correlation

function

Cn := 〈K0 sinx0Kn sinxn〉, (4.67)
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where we will take the average over the initial distribution to be uniform over phase space. To

evaluate this function, we need to calculate the exponentials eixm of the iterated coordinates, in

view of the form

Cn = K0Kn

〈
eix0eixn − eix0e−ixn

〉
+ c.c. (4.68)

of the correlation functions.

We will proceed by calculating the first few correlations before generalizing to the arbi-

trary case. If we use the generating function for the Bessel functions Jn(x),

exp
[(

t− 1
t

)
z

2

]
=

∑
s

Js(z)tn , (4.69)

we can let t = exp(ix) and z = K to obtain

exp(iK sinx) =
∑

s

Js(K)eisx . (4.70)

This relation allows the evaluation of the first iterated exponential,

eix1 = exp[i(x0 + p0 +K0 sinx0)]

=
∑
s0

Js0(K0)ei(s0+1)x0eip0 .
(4.71)

We can iterate this procedure to obtain the next two exponentials. After reversing the order of

the indices, we obtain

eix2 =
∑
s0,s1

Js0 [K1]Js1[K0(s0 + 2)]ei(s1+s0+1)x0ei(s0+2)p0

eix3 =
∑

s0,s1,s2

Js0 [K2]Js1 [K1(s0 + 2)]Js2 [K0(2s0 + s1 + 3)]

× ei(s2+s1+s0+1)x0ei(2s0+s1+3)p0

(4.72)

At this stage the pattern of the iteration is apparent. We can define the recurrence relations

α0 = s0 + 1
αn+1 = αn + sn+1

(4.73)

and

β0 = 1 + α0
βn+1 = βn + αn ,

(4.74)
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and then write the nth iterated exponential as

eixn =
∑

s0···sn−1

Js0(Kn−1β0)Js1(Kn−2β1) · · ·Jsn−1 (K0βn−1)eiαn−1x0eiβn−1p0 . (4.75)

Now it is straightforward to evaluate the correlations (4.67), as the phase-space averages amount

to projections into a Fourier basis, with the general result

Cn =
K0Kn

2

∑
s0···sn−1

Js0(Kn−1β0)Js1(Kn−2β1) · · ·Jsn−1(K0βn−1)

× (δαn−1 ,1 − δαn−1,−1)δβn−1 ,0 ,

(4.76)

where δn,n′ is the Kronecker symbol. Thus, the first few correlations evaluate to

C0 =
K2
0

2

C1 = 0

C2 = −K0K2

2
J2(K1)

C3 =
K0K3

2
[
J3(K1)J3(K2)− J1(K1)J1(K2)

]

C4 =
K0K4

2
[
J2(K1)J2(K3) + O(K−3/2)

]
,

(4.77)

whereK is the statistical average of theKn. For the normal standard map,Kn = K for all n, and

inserting these correlations into Eq. (4.20), we recover the diffusion rate (4.24). On the other

hand, for amplitude noise, it is appropriate to average theKn over their probability distributions,

as in (4.28). Doing so, we recover the noise-modified diffusion result (4.29). Notice that for the

case of uniformly distributed amplitude noise, Eq. (4.29) can be integrated analytically, with the

somewhat unenlightening result,

D(K, δKp−p) =
K2

4
+
δK2

p−p
48

+
K2

2

{
− J2(K, δKp−p) + J 2

2 (K, δKp−p)

+
4

δKp−p

[
J2(K+)− J2(K−)

]2

− 4
δKp−p

[
J0(K+)− J0(K−)

][
J2(K+) − J2(K−)

]}
,

(4.78)
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where K± := K ± δKp−p/2,

J2(K, δKp−p) =
1

δKp−p

{
K+ J0(K+) −K− J0(K−)− 2

[
J1(K+)− J1(K−)

]

− π

2
[
J0(K+)H1(K+)− J1(K+)H0(K+)

]

+
π

2
[
J0(K−)H1(K−)− J1(K−)H0(K−)

]}
,

(4.79)

and the Hn(x) are the Struve functions of order n.

4.8.2 Quantum Correlations

The calculation of the quantum correlations follows along similar lines to the classical calcula-

tion, but is somewhat more complex. The derivation here follows the work of Shepelyansky

[Shepelyanskii82; Shepelyansky87]. The goal here is to calculate the (symmetrized) quantum

correlation function

Cq,n =
K0Kn

2
〈ψ0|(sinxn sinx0 + sinx0 sinxn)|ψ0〉 , (4.80)

which is averaged with respect to the initial state |ψ0〉. The coordinates xn and pn here are

Heisenberg-picture operators, which obey equations formally equivalent to the classical standard

map, as we have indicated above. The initial state is again approximately uniform over phase

space, so that

〈ψ0|eimx0einp0 |ψ0〉 = δm,0δn,0 . (4.81)

We begin as before, calculating the first iterated exponential

eix1 = ei(x0+p0+K0 sin x0) = exp
[
−p0 + ix0 +

K0

2
eix0 − K0

2
e−ix0

]
. (4.82)

To factor this exponential, we use two special cases of the Baker–Campbell–Hausdorff relation

[Wilcox67]. The first is

exp(A +B) = exp
(
B
ec − 1
c

)
exp(A) (4.83)

for operators A andB such that [A,B] = cB. The second case is

exp(A +B) = exp(A) exp(B) exp
(
−1
2
[A,B]

)
= exp(B) exp(A) exp

(
1
2
[A,B]

)
, (4.84)
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if [A, [A,B]] = [B, [A,B]] = 0. After factorization, the result is

eix1 = exp
(
i
2K0

k̄
sin(k̄/2) sin(x0 + k̄/2)

)
eix0eip0eik̄/2 . (4.85)

We can then apply the identity (4.70), with the result

eix1 =
∑
s0

Js0(Kq,0) exp
[
i
k̄

2
(s0 + 1)

]
ei(s0+1)x0eip0 , (4.86)

where Kq,0 := K0 sin(k̄/2)/(k̄/2). The general case is then obtained by iterating this relation

and then normally ordering the operators (i.e., so that all the p0 are on the right). Shepelyansky’s

result is

eixn =
∑

s0···sn−1

Js0(Kq,n−1β0)Js1(Kq,n−2β1) · · ·Jsn−1(Kq,0βn−1)eiγn1 eiαn−1x0eiβn−1p0 ,

(4.87)

where the functions αn and βn are defined as before, and we have defined an additional function

by the relations

γ0 =
k̄

2
(s0 + 1)

γn+1 = γn +
k̄

2
sn(αn + βn) +

k̄

2
α2n .

(4.88)

We can then define the function

R(n, r) :=
1
2
〈ψ0|[exp(−irx0) exp(ixn) + exp(ixn) exp(−irx0)]|ψ0〉

=
1
2

∑
s0···sn−1

Js0(Kq,n−1β0)Js1(Kq,n−2β1) · · ·Jsn−1(Kq,0βn−1)

× (1 + e−iβn−1 k̄q)eiγn1 δαn−1,q δβn−1,0 ,

(4.89)

in terms of which we can write the correlation function as

Cq,n =
K0Kn

4
[
R(n,−1)−R(n, 1)

]
+ c.c. . (4.90)
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The first few of these quantum correlations evaluate to

Cq,0 =
K2
0

2

Cq,1 = 0

Cq,2 = −K0K2

2
J2(Kq,1)

Cq,3 =
K0K3

2
[
J3(Kq,1)J3(Kq,2) − J1(Kq,1)J1(Kq,2)

]

Cq,4 =
K0K4

2
[
J2(Kq,1)J2(Kq,3) +O(K−3/2

q )
]
,

(4.91)

Hence, we see that the first few quantum correlations have essentially the same form as the

classical correlations in Eqs. (4.77), but with the quantum scaling factor applied to the arguments

of the Bessel functions. The diffusion-rate results in the case of the normal quantum kicked rotor

(4.47) and the amplitude-noise case (4.49) then proceed as in the classical case.


