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1.1 Classical Chaos

The study of chaos in dynamical systems originated near the end of the 19th century [Moser73;

Moser78; Reichl92; Peterson93]. At the time, Newtonian mechanics gave an impressively ac-

curate description of the motion of the bodies in the solar system, even prompting (somewhat

serendipitously) the discovery of Neptune, in order to explain a discrepancy between the pre-

dicted and observed trajectories of Uranus. Although the problem of the dynamics of three

gravitationally interacting bodies was not (and still is not) analytically solvable in general, much

headway was made in the prediction of planetary locations by first considering only the inter-

action of each planet with the sun, and then taking into account the perturbations due to the

interactions of the planets with each other. The apparent clock-like regularity of the solar system

and the accuracy with which the planetary motion could be computed prompted the question of

the stability of the solar system: would the solar system continue in its usual fashion, with the

planets maintaining their regular orbits, or could the motion of the planets change drastically in

the future? Showing that the solar system is indeed stable, which amounts to showing that suc-

cessive corrections (perturbations) to the planetary motion converge, was at the time considered

quite important. In fact, it was posed by Weierstrass, after a comment by Dirichlet, as one of the

prize questions in a contest, organized by Mittag-Leffler, in honor of King Oscar II of Sweden

and Norway. Henri Poincaré submitted a complex and innovative entry that demonstrated the

stability in the three-body problem and was named the winning entry. However, after its publi-

cation it was pointed out that Poincaré had made a significant error in his proof. Mittag-Leffler’s

rather drastic response was to recall and destroy every copy of the issue of Acta Mathematica

in which Poincaré’s proof appeared. Poincaré subsequently produced a revised work that in-

stead appeared as the prize-winning entry; however, this revised work contained the opposite

conclusion: the stability of the solar system could not be guaranteed. The ideas embodied in

this work prompted Poincaré’s later famous statement of how minute differences in the initial

conditions of a system can lead to wildly different outcomes. This is the key notion of chaotic

dynamical systems, which has the consequence that small but inevitable errors in our knowledge

of the state of a system necessarily forbid accurate, long-term predictions of the system’s evolu-
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tion. Thus, despite the deterministic nature of chaotic systems, their dynamics are inherently

unpredictable, and they appear to be random.

Despite Poincaré’s remarkable achievement, the study of chaos did not really take off

for several decades, although there were several important results during this period by George

Birkhoff and Carl Ludwig Siegel, among others. In the 1950’s and 60’s the problem of stability in

the three-body problem was revisited, and an important result was obtained in stages by Andrei

N. Kolmogorov, Vladimir I. Arnol’d, and JürgenMoser, in the celebrated KAM theorem [Moser73;

Moser78; Tabor89]. This result restored the stability of the solar system in the sense that it

showed that certain configurations are stable while others were unstable (at least in restricted

versions of the solar system). Furthermore, if the aforementioned perturbations are small, then

most of the possible configurations are stable. So, although the stability of the solar system

seems to be assured, this whole series of events resulted in the important recognition of the

possibility of chaos.

The study of chaotic systems began in earnest with the advent of computers, which

facilitated the study of the inherent complexity of chaotic systems. This line of study began

with the work of Edward Lorenz, who found this same sort of instability in numerical “exper-

iments” studying a hydrodynamic system, which served as a very basic model for the atmo-

sphere [Lorenz63]. Since then, chaos has been found to be ubiquitous both in physics as well

as in other disciplines, having found applications in such diverse phenomena as plasma confine-

ment [Hazeltine92], laser dynamics [Roy92], chemical reactions [Simoyi82], cardiac rhythms

[Glass86], and disease epidemiology [Schaffer86]. Chaos is also important in the study of dy-

namical systems, as chaos is the rule rather than the exception, despite the traditional textbook

view of physics.

The term “chaos” was introduced [Li75] to refer to this “deterministic randomness” in

dynamical systems. However, it is still difficult to provide a definition of chaos that is universally

accepted. On the other hand, it is possible to point out some important characteristics of systems

that we refer to as being chaotic:
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1. As mentioned before, a dynamical instability leading to unpredictability is a central charac-

teristic of chaos. Furthermore, this instability should be exponential rather than linear in

time, since in the linear case predictability is possible even in the presence of a slight un-

certainty if a sufficiently long history of the system is known. In the exponential (chaotic)

case, however, no additional predictive power is gained by knowing the system history be-

yond the initial condition [Chirikov91]. These properties can be more formally quantified

using the Lyapunov exponent and the Kolmogorov-Sinai entropy [Ott93; Lichtenberg92].

2. The instability is purely deterministic and intrinsic to the dynamics; the chaos is not

explained by external noise [Chirikov91].

3. The instability should be global in the sense that chaotic behavior occurs for a range of

conditions and is not limited to a set of zero measure in phase space (defined below), as

in the unstable configuration of a perfectly inverted pendulum. Also, the chaotic trajec-

tories should be ergodic, so that they eventually wander throughout the possible range of

chaotic trajectories (although it is possible to find disconnected regions of chaos in weakly

perturbed Hamiltonian systems, as we briefly discuss below, and in dissipative systems,

the trajectories are only ergodic over the “attracting set”).

4. The system should be in some sense bounded, to avoid trivial exponential separation of

trajectories, as in x(t) = x0 exp(t) for different x0. To keep the trajectories confined as

they separate from each other, there must be some notion of “stretching and folding,” as

exemplified in the Smale horseshoe map [Hilborn94]. Another related property is that

each point on a chaotic trajectory should lie arbitrarily close to a periodic trajectory (i.e., a

trajectory that repeats itself in finite time) [Devaney89].

5. The physical model of the system should be simple. It is surprising that simple sys-

tems such as the three-body problem can give rise to such complicated and unpredictable

behavior, but complicated behavior is not surprising in a system with many degrees of

freedom. So, for example, although Brownian motion is unpredictable, a deterministic

physical model would include the collisional interactions of a macroscopic number of gas
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molecules; hence, we would not call this system chaotic. (Note that there are methods

for analyzing data to distinguish low-dimensional chaos from such high-dimensional noise

[Sugihara90; Tsonis92].)

When we return to the concept of integrability below, we can be more precise about the meaning

of chaos, at least in Hamiltonian systems.

As an example of the distinction between determinism and predictability in chaotic

systems, consider the standard map, which models one of the two classically chaotic systems

presented in this dissertation. The standard map is a set of two equations,

pn+1 = pn +K sinxn

xn+1 = xn + pn+1 ,
(1.1)

where the sole parameter K controls the “degree of chaos” of the map. This mapping is iter-

ated to determine a trajectory (x0, p0), (x1, p1), . . . , (xn, pn). These equations are, of course,

deterministic, in that there is no random element involved. In fact, though this map looks quite

simple, it gives rise to rich and complicated dynamics. The characteristic lack of predictability

in this map is illustrated in Fig. 1.1, where the standard map is iterated with the same initial con-

dition on four different computers. Even though the results should be identical among the four

computers, they only agree for around 16 iterations. Beyond this point the trajectories diverge,

and prediction clearly becomes meaningless. In principle, it is possible to make meaningful

predictions over a larger number of iterations by using greater precision in the computations.

However, a linear increase in prediction time requires an exponential increase in the numerical

precision. More importantly, for modeling physical systems, the precision with which the initial

state of the system is known nearly always limits the prediction time.

Despite this lack of predictability, chaotic systems can still be meaningfully studied.

The unpredictability that we have indicated thus far is for a trajectory evolving from a particular

initial state. The numerically generated trajectory, referred to as a pseudotrajectory, diverges

away from the real trajectory with the same initial condition; however, it is often possible to find

another real trajectory with a slightly different initial condition that shadows the pseudotrajec-

tory in the sense that it remains close to the pseudotrajectory for long times. This shadowing
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Figure 1.1: Numerical iteration of the standard map, illustrating the inherently unpredictable

nature of chaotic systems. The same FORTRAN77 code was executed on four modern com-

puters to iterate the standard map for K = 10 and the initial condition (x0, p0) = (1, 1). The
spatial coordinate xn (taken modulo 2π) is plotted for the first 40 iterations of the standard
map. Although nominally the same (64-bit, or around 15-digit) “double precision” numerical
representation was used on the different computers, slight differences in the numerical round-

ing methods among the processors are rapidly amplified as the iterations progress. Hence, the

trajectories are identical only for the first few iterations, and they become completely uncorre-

lated after about 25 iterations. The processors employed here were a Motorola PowerPC 750

(solid line), an Intel Pentium III (dashed line), a MIPS/SGI R10000 (dotted line), and a Cray

SV1 processor (dash-dotted line).

occurs for arbitrarily long times in a restricted class of systems (“hyperbolic systems,” which are

comparatively rare), but shadowing occurs also for generic (nonhyperbolic) chaotic systems for

long times between “glitches” [Grebogi90; Sauer91; Sauer97]. An important consequence of

this effect is that global or statistical predictions regarding ensembles of trajectories are still

meaningful and can be accurately computed, implying a robustness or structural stability under

sufficiently small perturbations [Chirikov91]. So, the study of chaotic systems involves a shift

to asking different kinds of questions, and in this way much progress has been made in uncover-

ing universal structure and behavior in chaotic systems. This notion was recognized early on by

Poincaré, who developed a geometric approach to studying dynamical systems that we introduce

in the next section.
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1.1.1 Phase Space

Now we explore the concept of phase space, whose graphical depiction, the phase portrait, is a

powerful tool for visualizing the behavior of dynamical systems. The phase space of a dynamical

system is the space of points that completely specify the state of the system. In a coordinate

representation, a dynamical system can be expressed as a set of first-order differential equations:

∂tx1 = f1(x1, x2, . . . , xn)
∂tx2 = f2(x1, x2, . . . , xn)

...

∂txn = fn(x1, x2, . . . , xn)

(1.2)

(where ∂t ≡ ∂/∂t). This dynamical system is autonomous, since the fi do not explicitly de-

pend on time, but an external periodic drive can be accounted for by introducing time as an

auxiliary coordinate [Ott93]. Then the phase space for this system is the set of all n-tuples

(x1, x2, . . . , xn). The location in phase space at a particular time together with the model func-

tions fi then completely specify the state of the system for all values of the time parameter

t.

In this work we are interested in Hamiltonian systems. These systems are character-

ized by a Hamiltonian function H(xi, pi, t), such that the dynamics in terms of the “canonical

coordinates” xi and pi are given by Hamilton’s equations:

∂txi = ∂piH
∂tpi = −∂xiH .

(1.3)

The phase space is then simply the space of the canonical positions xi and momenta pi. In the

special case where the Hamiltonian is independent of time, the system is said to be conserva-

tive in that the energy (the particular value of H for a given phase-space point) is a conserved

quantity, which follows directly from Eqs. (1.3). For time-dependent Hamiltonian systems, the

energy is not conserved, but all Hamiltonian systems are characterized by the more general con-

servation property that volumes in phase space are preserved under time evolution as a conse-

quence of Liouville’s theorem (and as a special case of Poincaré’s integral invariants) [Tabor89].

The simplest Hamiltonian systems that one can consider are of one dimension (or one

degree of freedom) and time-independent, where the two-dimensional phase space is spanned
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by the pair of variables (x, p). The trajectories in this phase space are simply the surfaces of

constant energy, because energy is a conserved quantity. We illustrate such a phase space by

considering the pendulum, where the Hamiltonian is

H(x, p) =
p2

2
− cos x . (1.4)

The phase portrait for the pendulum is shown in Fig. 1.2. There are several interesting features

to note in the phase portrait. One type of motion, known as “libration” (or “oscillation”), appears

as a set of elliptical contours, along which the trajectories flow in the clockwise direction. These

trajectories correspond to the pendulum motion one observes in the operation of a grandfather

Figure 1.2: Plot of the phase space for the pendulum. The curves (trajectories) are the level

sets of the pendulum Hamiltonian, Eq. (1.4). The different colors correspond to trajectories

beginning from different initial conditions.
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clock, and they emanate from a stable fixed point at (x, p) = (0, 0), which corresponds to the

resting configuration of the pendulum. Another fixed point occurs at (x, p) = (π, 0) (which

is equivalent to the point (−π, 0) because of the spatial periodicity of the Hamiltonian), and

describes the stationary but unstable configuration of an inverted pendulum. Another distinct

type of motion is “rotation,” which appears as a set of curves that do not cross the p = 0 axis.

For this motion the trajectories flow to the right in the upper half-plane and to the left in the

lower half-plane. These trajectories correspond to more rapid motion of the pendulum such that

the pendulum does not reverse direction as in the librational case, but rather continues “over the

top.” The boundary between the two types of motion is the separatrix, which passes through the

unstable fixed point. From this example, we can see that the phase portrait gives a concise, visual

summary of the possible dynamics of a system (although the time-dependence of the trajectories

must still be extracted from the equations of motion).

In the experiments described later on, we study time-periodic (“driven”), one-dimen-

sional Hamiltonian systems. In this case, the phase space is of higher dimension than in the

time-independent case, since time acts as an effective extra dimension. In fact, it can be shown

that these systems (referred to as 1 1
2
-degree-of-freedom systems) are formally equivalent to

two-degree-of-freedom systems [Morrison96]. So, the flow of these systems cannot be repre-

sented in a planar plot in the same way as one-dimensional systems. However, one can instead

use a reduced phase plot, known as a Poincaré surface of section, which is a plane of constant

t, modulo the period of the external drive. The plot constructed in this way consists of the

intersections of the trajectories with the surface of section, which appear as dots in the plane,

each corresponding to the coordinates (x, p) plotted once per drive period. This phase portrait

still captures the full dynamics, since each point in the phase plot uniquely determines all the

successive points in the trajectory. Sample phase portraits of this type are shown in Fig. 1.3,

for the pendulum with a weak, sinusoidal amplitude modulation, and in Fig. 1.4, for a strongly

amplitude-modulated pendulum, corresponding to the system studied in much greater detail in

Chapter 6. This surface-of-section technique also works for two-dimensional autonomous sys-

tems, which have four coordinates in the full phase space, since the conserved energy eliminates
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one of the coordinates, and the phase plane is taken to be at a constant value of another of the

coordinates (where the intersections are also usually only plotted for one direction of passage

through the surface). This technique can be used to study systems with more than two degrees

of freedom, but then the location in the phase plane no longer uniquely determines the rest of

the trajectory.

Figure 1.3: Phase space (Poincaré section) of a pendulum with a weak amplitude drive, with

Hamiltonian H = p2/2 − (1 + 0.05 cos t) cos x. This “stroboscopic” plot is sampled at every
t = 2πn for integer n. As expected from KAM theory, most of the stable structure of the

pendulum is left unchanged by the weak drive. However, the separatrix has broken down into a

disordered region of chaos.
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1.1.2 Integrability and Chaos

Now we will specialize our discussion of chaos to Hamiltonian systems, which will be our main

interest in this work. Before doing so, however, we note that nonlinearity is an essential ingre-

dient for producing chaotic behavior. Returning to the general dynamical system described by

Eqs. (1.2), if this system is linear, then the equations can be expressed in terms of a matrix as

∂txi =
∑

j

Mij xj . (1.5)

Figure 1.4: Phase space (Poincaré section) of a pendulum with a strong amplitude drive, with

Hamiltonian H = p2/2− (1 + cos t) cos x. The stronger modulation here, compared to Fig. 1.3,
breaks down most of the stable pendulum structure, resulting in widespread chaos.
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This linear system of equations then has the solution [Mirsky90]

xi(t) =
∑

j

exp(Mt)ij xj(0) , (1.6)

where exp(A) is the matrix exponential of the square matrix A, which is defined in terms of

the usual Taylor series expansion of the exponential function and exists for any matrix. Hence,

linear systems are quasiperiodic (i.e., having a discrete frequency spectrum) in steady state and

therefore predictable; by contrast, chaotic systems are characterized by continuous power spec-

tra [Ott93; Chirikov91].

Turning back now to Hamiltonian systems, we can see that no chaos occurs in one-

dimensional autonomous Hamiltonian systems, because the existence of a conserved quantity,

the energy E(x, p), allows for the solution [Morrison96]

t =
∫ x

x(0)

dx′ [∂pH(x′, p)]−1 , (1.7)

where p is regarded as a function of x and E. This solution must then be inverted to obtain x(t)

(and hence p(t)). So, the phase-space trajectories are regular for all one-dimensional autonomous

Hamiltonians, as is the case for the pendulum example in Fig. 1.2 (indeed, any continuous dy-

namical system of the form of Eqs. (1.2) with n = 2 is free of chaotic behavior [Ott93]). As a

result, Hamiltonian systems of one degree of freedom are said to be integrable.

The important point of integrability in one dimension is the existence of a constant

of the motion. In the case of N degrees of freedom, the system is integrable if there exist N

independent constants of the motion Ik that are in involution, which means that their Poisson

brackets (taken pairwise) vanish:

{Ij , Ik}P :=
N∑

i=1

[(∂xiIj)(∂piIk) − (∂piIj)(∂xiIk)] = 0 (∀ j, k ∈ {1, . . . , N}) . (1.8)

These constants of the motion are related by Noether’s theorem [Reichl92] to symmetries of

the system (in the one-dimensional case, the constance of the energy is a consequence of the

time-invariance of the Hamiltonian). The existence of these constants insures that the motion

of trajectories in the 2N -dimensional phase space is restricted to N -dimensional surfaces; under
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slightly more restrictive assumptions, these surfaces are N -tori, and there exists a canonical

transformation to action-angle coordinates, in which the dynamics are similar to that of a free

particle (and hence not chaotic) [Morrison98]. Separable systems, where the Hamiltonian has

the form

H(x1, . . . , xN , p1, . . . , pN) = H1(x1, p1) + · · ·+HN(xN , pN) , (1.9)

form a special class of higher-dimensional, integrable systems. These systems are clearly inte-

grable, because they are composed of uncoupled one-dimensional systems.

Generic Hamiltonian systems do not possess the high degree of symmetry required

for integrability. In the case of the 1 1
2
-degree-of-freedom systems studied in this work, the

external periodic drive breaks the time-invariance of the Hamiltonian and thus opens up the

possibility for chaotic behavior. When discussing the formation of chaos in Hamiltonian systems,

it is common to start with an integrable system (such as the pendulum in Fig. 1.2) and view

the symmetry-breaking interaction as a perturbation. When a weak perturbation is added, as

in Fig. 1.3, nonlinear resonances between the degrees of freedom can occur. By the Poincaré–

Birkhoff fixed-point theorem [Tabor89], these resonances produce pendulum-like structures

in the phase space (for weak perturbations). In Fig. 1.3, several nonlinear resonances are ap-

parent, including the original structure of the unperturbed pendulum around the stable fixed

point as well as two other pairs of resonances (although arbitrarily many more are present on

smaller scales). Note that the corresponding structure in the unperturbed pendulum is not in

itself a nonlinear resonance, though, because it is not the direct result of coupling between two

degrees of freedom. Although a single (isolated) resonance does not result in chaotic behavior

[Walker69], the presence of multiple resonances causes their separatrices to broaden into chaotic

regions [Chirikov79] (or homoclinic “tangles” [Ozorio de Almeida88; Tabor89]), as is shown by

the diffuse area around the central resonance in Fig. 1.3. Picturesquely, these resonances are

referred to as “islands of stability in a sea of chaos.”

As expected from KAM theory, the weak perturbation in Fig. 1.3 leaves most of the sta-

ble structure intact. The invariant surfaces that survive the perturbation are thus referred to as

“KAM surfaces.” For the much stronger perturbation in Fig. 1.4, most of the stable structure has
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degenerated into chaos. The chaotic region in this system is bounded in momentum, though, be-

cause for sufficiently large momentum the kinetic energy dominates the perturbing interaction,

restoring stability. The chaotic motion due to the interaction of the resonances can be thought

of as competition between different stable motions, where the trajectory is not dominated by

any one of the motions (as is the case for trajectories in an island of stability).

1.2 Quantum Chaos

The field of quantum chaos, which brings together the study of classical chaotic dynamics and

quantum-mechanical systems, is a relatively new area of study, especially considering how long

the fundamental ideas of its two parent fields have been around. Interestingly, the first notions

of quantum chaos seem to have predated quantum mechanics itself: the problem of “Chladni

figures,” the patterns of dust formed on thin, rigid, vibrating plates, was understood in the 19th

century for plates with simple shapes, but not for plates with irregular borders [Stöckmann99].

(Actually, this problem belongs to a more general class of “wave chaos” problems, but as in

microwave cavities and surface waves in fluids, these systems are equivalent to quantum “bil-

liard” systems in the sense of time-independent quantum mechanics [Stöckmann99].) Einstein

[Einstein17] realized as early as 1917 that there could be problems quantizing classical systems

in the “old” quantum theory, where the classical tori with actions given by a multiple of Planck’s

constant � were associated with quantum states (according to the Bohr-Sommerfeld and later

the Einstein-Brillouin-Keller quantization rules) [Tabor89; Brack97; Zaslavsky81]. This quan-

tization procedure, while emphasizing the connection with the underlying classical description,

obviously fails for chaotic systems where action-angle variables do not exist. The advent of the

“new” (Schrödinger/Heisenberg) quantum mechanics effectively sidestepped these problems

by creating a very different formalism, and it was not until much later that these ideas were once

again appreciated [Tabor89]. Indeed, most of the progress in the field of quantum chaos has

been made only during the last quarter century.

As in classical Hamiltonian systems, there is a sense of integrability in quantum systems.

Symmetries also lead to conserved quantities in quantum mechanics in the form of quantum
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numbers, which are the eigenvalues of operators that “generate” the transformation under which

the system is invariant. For an N -dimensional quantum problem, if there are N operators Îk

associated with conserved quantities that pairwise commute,

[Îj, Îk] := Îj Îk − Îk Îj = 0 (∀ j, k ∈ {1, . . . , N}) , (1.10)

the N (“simultaneous”) operator eigenvalues completely specify the state of the system as well

as its time evolution [Eckhardt88; Reichl92]. This requirement on the quantum operators is

formally analogous to the classical definition of integrability, since the existence of N constants

in involution as in Eq. (1.8) implies the existence of N vector fields,

LIk =
N∑

i=1

(∂piH)∂qi − (∂qiH)∂pi (1.11)

(such that the flow of the trajectories along the LIk leaves Ik unchanged), that pairwise commute

[Eckhardt88; Morrison96]:

[LIj , LIk] = 0 (∀ j, k ∈ {1, . . . , N}) . (1.12)

Alternatively, the pairwise vanishing of the classical constants in the Poisson bracket carries over

more directly to the quantum case in the form of the Moyal bracket [Eckhardt88; Reichl92],

defined in Section 1.3.2 below. In any case, quantum “nonintegrability” occurs when symmetries

are broken, leading to the loss of “good” (conserved) quantum numbers.

Because classical nonintegrability leads to chaotic behavior, onemight expect something

similar to happen for quantum nonintegrable systems. Surprisingly, though, classical chaos is

suppressed in quantum systems. This was discovered numerically in a seminal study by Casati,

Chirikov, Izrailev, and Ford (CCIF) [Casati79] of the quantum version of the standardmap (1.1),

obtained by quantizing the kicked-rotor Hamiltonian,

H =
p2

2
+K cosx

∑
n

δ(t− n) , (1.13)

which generates the classical standard map. (We will treat this problem in detail in Chap-

ter 4.) CCIF studied the kicked rotor in the regime where the phase space is characterized
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by widespread chaos. The classical signature of chaos here is diffusion of an ensemble of tra-

jectories in momentum as they gain energy, on average, from the time-dependent potential.

Quantum mechanically, though, CCIF found that the kicked rotor gains energy as in the classi-

cal case only for a short time, after which the diffusion is suppressed. This effect has come to

be known as dynamical localization, and is a dramatic example of how quantum effects suppress

classical chaos. Shepelyansky [Shepelyansky83] has also provided a striking numerical demon-

stration of the suppression of chaos in the quantum kicked rotor, as we illustrate in Fig. 1.5.

In this simulation, the classical and quantum systems evolve for some time from the same ini-

tial condition, and the suppression of energy growth by dynamical localization is evident in the

quantum case. After evolving for some duration, a time-reversal is performed. In principle, both

models should reverse their behavior and return to their initial conditions. The classical sys-

tem only successfully contracts for a short time, though, and due to the buildup of numerical

roundoff errors, the trajectories “forget” their history and the ensemble resumes diffusion, as

expected for chaotic dynamics. The quantum system, on the other hand, makes a clean return

to the initial state, indicating a robustness against perturbations and thus an absence of chaos.

Note that such stability is expected in bounded quantum-mechanical systems, since they must

have discrete spectra and thus exhibit almost-periodic dynamics [Hogg82].

1.2.1 Quantum Chaology

The apparent irony, then, of the field of quantum chaos is that it is the study of that which does

not exist. Nonetheless, there are still some manifestations of the underlying classical disorder.

One of the best-known examples is the disorder of the energy-levels in quantum nonintegrable

systems, where the energy-level statistics are equivalent to those of random-matrix eigenvalues

[McDonald79; Bohigas84; Tabor89; Reichl92]. Although the disorder in the spectra reflects the

underlying (classical) dynamical disorder, this disorder is not unpredictable in the sense of dy-

namical chaos, because the spectral features can be computed with high accuracy [Delande01].

The quantum-localization effect that we already discussed is another manifestation of the clas-

sical chaos. It has been shown [Fishman82; Grempel84] that the kicked rotor can be mapped

onto the Anderson localization problem [Anderson58], where a particle is spatially localized by



1.2 Quantum Chaos 17

〈 
  

  
  

 〉
 

0

4000

0 50 100 150 200

p

time (kicks)

/
2

2

Figure 1.5: Comparison of classical (heavy solid line) and quantum (thin solid line) momentum

transport in the kicked rotor for K = 10 and scaled Planck constant k̄ = 1 (simulation). The
quantum initial condition is a Gaussian (minimum-uncertainty) wave packet with σp = 2.5, and
the kinetic energy 〈p2/2〉 is plotted as a function of time; the classical evolution is the corre-
sponding average for an ensemble of initial points picked according to the quantum distribution.

The classical transport is diffusive, as characterized by the linear growth of energy. The quantum

transport only shows diffusion for short times, and displays localization for longer times. At 100
kicks (marked by the dashed line), the direction of time is reversed. The classical ensemble

resumes diffusive behavior after numerical errors build up in the simulation (thus converting

the “special” trajectories that evolve back to the initial condition into generic, diffusing trajecto-

ries), which is typical for chaotic dynamics. The quantum system, on the other hand, retraces its

steps back to its initial condition with high fidelity, indicating a lack of chaos. Note that in this

quantum calculation, x is treated as an extended coordinate (as is the case in the experiment),
necessitating a large (2 × 106 points) numerical grid to avoid aliasing effects.
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the influence of a disordered potential. Thus in dynamical localization, the disorder that causes

energy localization is not truly random (in the sense of an externally imposed randomness), but

is generated dynamically by the underlying classical chaos. The chaos-assisted tunneling effect

that we discuss in Chapter 6 also reflects the disorder associated with the classical chaos. Since

the tunneling rate is strongly influenced by the states inside the chaotic sea, and these states are

very sensitive to changes in the system parameters, the tunneling rate shows strong fluctuations

as a parameter varies. Similar fluctuations are also apparent, for example, in the conduction of

mesoscopic semiconductor structures [Marcus92; Stöckmann99], but it is worth reiterating that

these symptoms of disorder are not chaotic in the classical sense.

In light of this suppression of chaos in quantum systems, Berry has introduced the term

quantum chaology [Berry87; Berry91] to refer to the study of the “fingerprints” or “signatures” of

classical chaos in their quantized counterparts (of which the above phenomena are examples, as

well as the “scarring” of eigenstates along unstable periodic orbits [Heller84]). This is precisely

the approach to quantum chaos adopted in this work, as we embark on a detailed investigation of

localization, tunneling, and other quantum transport phenomena in classically chaotic systems.

1.2.2 Chaos in Quantum Mechanics

It is worth noting that one can also approach the problem of quantum chaos by asking what

kinds of chaotic behaviors can be found in quantum systems. Part of the difficulty in carrying

over classical chaos to quantum mechanics is that classical chaos is often defined in terms of

the divergence of nearby trajectories, which do not have a straightforward quantum analog. If

two nearly identical wave packets evolve, even in a nonintegrable system, the wave packets will

remain close in the sense that their overlap integral is preserved under unitary time evolution;

however, this is not a proper argument against chaos in quantum mechanics, as this argument

applies also to the overlap integral of two classical phase space distributions evolving by the

Liouville equation [Hilborn94]. A variation on this idea is to look at sensitivity to parameter per-

turbations, rather than perturbations to the quantum state, to uncover some quantum sensitive

dependence. Because of the sensitivity to parameter perturbations of quantum states associated
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with chaotic regions in phase space, the overlap of two initially identical wave packets evolving

under slightly different Hamiltonians will drop exponentially under chaotic conditions, but will

remain large in the stable case [Peres91b; Haake01; Gardiner97; Gardiner00]. This idea has

also been extended to studying the sensitivity of wave-packet evolution under randomly per-

turbed Hamiltonians, which shows a marked difference between stable and chaotic conditions

[Schack93; Schack94].

It is also possible to focus on the short-time quantum dynamics, where the behavior

resembles that of classical chaos, as is apparent in the initial diffusive phase of the quantum

kicked rotor [Chirikov87] shown in Fig. 1.5. Furthermore, initially localized wave packets can

also show exponential instability for short times [Toda87; Fox94; Lan94], as expected for a

similar classical distribution. Hence Chirikov [Chirikov92] has advanced the notion of finite-

time quantum chaos. There are also examples of genuine chaos where quantum mechanics is

involved. Quantum systems can give rise to chaotic behavior when coupled to a classical sys-

tem, as is the case for example with two-level atoms in a cavity coupled to a classical field

[Belobrov77; Milonni83; Fox90] or in a quantum-mechanical oscillator coupled to a classical

oscillator [Cooper94]. It has even been argued that chaos is possible in a purely quantum-

mechanical system obtained by quantizing a classical chaotic system, although not by the usual

quantization procedure, and this “configurational chaos” requires that the canonical momenta be

unbounded [Chirikov88; Weigert93; Peres96]. (Another proposal for a purely quantum chaotic

system [Blümel94] seems suspect in that the apparatus itself must become exponentially more

complicated as the evolution continues, and additionally shows sensitivity to perturbations of

the system parameters rather than to perturbations of the quantum state [Schack95].)

Finally, we note that the concept of the trajectory is central to the de Broglie–Bohm

formulation of quantum mechanics, so it is natural to look for chaotic behavior of these trajecto-

ries [Bohm93]. Interestingly, though, it has been found that the de Broglie–Bohm trajectories

can be chaotic even for an integrable billiard [de Alcantara Bonfim98], so in a sense there is “too

much” chaos in the de Broglie–Bohm picture, in contrast to the “not enough” chaos in standard

quantum mechanics. It is not clear, however, that these chaotic trajectories have any mean-
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ingful predictive power outside the statistical ensemble that reproduces the results of standard

quantum mechanics.

1.2.3 Experiments in Quantum Chaos

By far the majority of progress in the field of quantum chaos has been theoretical, but now there

has developed a large body of experiments to complement the theoretical advances. In this

section we give a very brief and far from complete overview of experimental work in quantum

chaos to illustrate the variety of systems in which the ideas of quantum chaos are important. An

important first step towards experimental study in this area was taken with the work of Bayfield

and Koch on the multiphoton ionization of hydrogen Rydberg atoms [Bayfield74]. A discrep-

ancy between the measured ionization thresholds and the predictions of classical models pro-

vided the first experimental evidence of dynamical localization [Galvez88; Bayfield89; Koch95].

Subsequently, Rydberg atom ionization experiments have given rise to a variety of interest-

ing phenomena [Blümel97], including scarring effects [Koch92; Koch95] and effects due to

“metamorphoses” of classical resonances as the field strength is varied [Bayfield96]. The spec-

troscopy of atoms in external fields also provides a frequency-domain arena for tests of quantum

chaos, including level statistics [Delande91; Delande01] and the influence of periodic orbits

[Eichmann88; Main91; Gutzwiller90]. The statistics of resonances in atoms, molecules, and

nuclei have also been shown to exhibit level-repulsion effects [Eckhardt88; Haake01].

As mentioned before, mesoscopic semiconductor structures provide an important arena

for the study of quantum chaos [Stöckmann99]. Conductance measurements of semiconductor

billiard structures show “universal conductance fluctuations” and weak localization effects with

the application of strong magnetic fields [Marcus92; Stöckmann99]. The tunneling current

through quantum-well heterostructures (“resonant tunneling diodes”) can also be understood

in terms of unstable periodic orbits in a chaotic regime [Fromhold94] and show effects due to

scarring [Wilkinson96a]. Semiconductor antidot lattices provide a different setting for studying

conductance fluctuations with applied magnetic fields [Weiss91; Weiss93], giving an experi-

mental realization of the Lorentz gas [Stöckmann99]. Another related billiard-like system is the
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“quantum corral” [Crommie95], where a scanning tunneling microscope (STM) can be used to

move individual atoms on a surface to build a confining structure for electrons.

A different class of experiments explores the area of “wave chaos,” exploiting the formal

equivalence of various other wave equations to the Schrödinger equation under certain circum-

stances. Perhaps the most notable among these are the microwave-cavity billiard experiments

[Stöckmann99], in which such topics as level statistics [Stöckmann90], scarring [Sridhar91],

dynamical localization [Sirko00], chaos-assisted tunneling [Dembowski00], and a trace formula

[Dembowski01] have been studied. This line of analysis has been extended to the study of

deformed micro-disk cavity lasers, which act as open billiard systems in the optical domain

[Gmachl98]. A similar realization of wave chaos occurs with the mechanical vibrations of alu-

minum blocks [Weaver89; Ellegaard95] or rigid plates [Neicu01; Stöckmann99], and billiard-

type experiments can be carried out using surface waves [Lindelof86; Blümel92; Kudrolli01] or

ultrasonic waves [Chinnery96] in fluids. Many of these billiard-type experiments are reviewed

in [Stöckmann99]. Finally, the equivalence of the electromagnetic equation in the paraxial ap-

proximation with the Schrödinger equation can be exploited to create an optical realization of

the kicked rotor [Fischer00; Rosen00].

Of course, the field of atom optics provides a clean and precise setting for experimental

explorations of quantum chaos, including the dynamical localization effect that we have intro-

duced, but we defer this discussion until Section 1.4.

1.2.4 On the “Usefulness” of Quantum Chaos

The field of quantum chaos is generally associated with fundamental interests in quantum me-

chanics, because of the initial motivation in this field to understand the interplay and corre-

spondence of quantum and classical mechanics. However, it is worth pointing out that quantum

chaos is also emerging as a field with important technological applications, and hence progress

in this field is desirable also from an applied standpoint. One obvious area where these ideas

will be important is in the semiconductor and microprocessor industries, where the nearly ex-

ponential increase in density of components will soon lead to sufficiently small devices that
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quantum effects will be significant. Present devices are strongly coupled to the environment

at normal operating temperatures, so that the electron coherence length is very short and thus

quantum effects are only important at very low temperatures, as in the conductance fluctuation

experiments mentioned above. But when quantum effects take over, the semiconductor devices

will obviously not have the high degree of symmetry necessary for integrability, so the charge

transport in these devices will fall in the regime of quantum chaos. Along these same lines, the

future development and demonstration of quantum computers [Steane97] will require careful

consideration of effects due to classical chaos to ensure proper operation [Georgeot00].

As we have already discussed, quantum chaos has been important in the understanding

of atomic spectra. Quantum chaos has also been shown to be of importance in the dynamical

manipulation of atoms by light [Robinson96]. However, there are many more applications of

quantum chaos outside of quantum mechanics in other wave systems. For example, quantum-

chaos effects are important in the understanding of underwater acoustics [Sundaram99b]. We

have also already mentioned the applicability of quantum chaos to the understanding of the

mode structure of microwave cavity devices and mechanical vibrations. In a similar optical anal-

ogy, weakly deformedmicro-disk semiconductor lasers show large improvements in directionality

and intensity over normal whispering-gallery mode lasers, which is an application of wave chaos

in an open system [Gmachl98]. Finally, a fiber-optical switch for the communication industry

has been proposed [Vorobeichik98], based on the ideas of chaos-assisted tunneling, which we

study in Chapter 6. In fact, a company (OpTun Ltd.) has been founded to develop these ideas.

1.3 Decoherence

The lack of long-time chaotic behavior in quantum mechanics seems to bring up difficulties in

how the theories of quantum and classical physics are related. Specifically, since quantum me-

chanics is believed to be the more universal theory, it should in some sense “contain” classical

mechanics as a limiting case. This idea, first advanced by Bohr, is known as the Correspondence

Principle, and showing how classical-quantum correspondence arises remains even now a con-

troversial and challenging problem. But because quantum mechanics does not support chaotic
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behavior in the sense of classical mechanics, it seems, oddly, that chaos cannot exist even in

classical mechanics, if we are to believe in correspondence. In a simplistic view one might ex-

pect to recover classical mechanics by formally taking the limit � → 0 (of course, since Planck’s

constant � is indeed a constant, what we really mean is that we are taking the limit where the

action of a system becomes arbitrarily large compared to �). However, this limit is highly sin-

gular and not necessarily well-defined, as one can see from the form of the WKB wave function

ψ ∼ exp(iS(x)/�) (where S is the action of the system) that applies in the “semiclassical”

regime of small �, which has an essential singularity at � = 0.

One path to correspondence is suggested, for example, by the initially diffusive behavior

in the kicked rotor that we noted above, which mimics the diffusion characteristic of classical

chaos. It has been argued [Chirikov87; Cohen91; Delande01] that the “quantum break time” tB,

when the behavior crosses over from diffusive to localized, scales as 1/�2, since in an energy-time

uncertainty sense, this is the time required for the discrete spectrum to become “resolvable” by

the system. Hence, it would seem that for macroscopic systems, the break time could become

unobservably long because � would effectively be very small. However, there is a second time

scale for quantum deviations from classical behavior, known as the “Ehrenfest time” tE, which

scales much more slowly, as log(1/�). The existence of this time was pointed out originally by

[Berman78] for a specific model, and this time scale was discussed by [Adachi88; Cohen91] in

the context of the kicked rotor, by [Karkuszewski01] for another driven, one-dimensional system,

and by [Zurek94] for general chaotic systems. We will discuss the origin of this time scale in

more detail below. The slow scaling of this time has dire consequences for correspondence,

for although this time scale diverges as � → 0, in physical reality � is always some nonzero

value, and thus spanning 30 orders of magnitude in � from a manifestly quantum regime to

a manifestly classical regime yields a relatively minor change in tE. By this argument, then,

we would predict absurdly short times for which quantum effects should set in for classically

chaotic systems [Adachi89; Zurek95]. Since this obviously violates common experience in the

macroscopic world, there is clearly a need to resolve this discrepancy between the quantum and

classical pictures.
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One solution to this problem is embodied in the theory of decoherence. The key idea

here is that macroscopic objects are in general not very well isolated from their “environment,”

which could, for example, include the internal (thermal) degrees of freedom or the ambient pho-

tons scattering off the object. Decoherence provides a mechanism by which the quantum co-

herence effects that suppress chaos can themselves be suppressed. Thus, even though it seems

clear that classical behavior does not, in general, arise as a limit of the Schrödinger-equation de-

scription, it can arise as a limit of an “open” quantum description that takes into account the

external influences on the system [Joos85].

Broadly speaking, there are two “roles” of decoherence in explaining classical behavior

as a consequence of quantum mechanics. The first is the suppression of quantum superposition

states at the classical level, which addresses the famous Schrödinger cat paradox and is inti-

mately related to the quantum-measurement problem [Wheeler93; Giulini92]. The second role

of decoherence is in ensuring classical behavior in the dynamical evolution of a system. These

two roles are, of course, closely related, but we will discuss them separately according to how

they are applied in explaining classicality.

1.3.1 Suppression of Quantum Superposition

In Schrödinger dynamics, the state of the system is described by the wave function or state

vector. For open systems, though, a more natural representation of the system is in terms of the

density operator. For a state |ψ〉, the density operator is defined as

ρ̂ := |ψ〉〈ψ| . (1.14)

In this case the density matrix (the representation of the density operator in a particular basis) is

highly redundant, because if the state vector has n components in some finite basis, the density

matrix has n2 components, but does not contain additional information. However, the density

matrix has the advantage that it can be generalized to an ensemble in a straightforward way

simply by averaging over the members |ψj〉 of the (usually large) ensemble,

ρ̂ :=
1
N

∑
j

|ψj〉〈ψj | . (1.15)
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A state corresponding to a wave vector as in (1.14) is referred to as a pure state, whereas an

ensemble average as in (1.15) is a mixed state. The diagonal elements ραα = 〈α|ρ̂|α〉 of the

density matrix are the populations, as they represent the probability of occupying the state |α〉.

The off-diagonal elements ραβ = 〈α|ρ̂|β〉 (α �= β) contain the relative-phase information of the

state, and are referred to as coherences. The important feature of the coherences to note here is

that they have their maximum magnitude for a pure state. In a mixed state, if the phases of the

various components are not aligned, the magnitudes of the coherences are reduced, falling to

zero for a completely uncorrelated ensemble. Notice that because the coherences represent the

potential for interference effects, they are in effect the “nonclassical” part of the density matrix.

It is only the populations that have a sensible interpretation as classical probabilities.

The treatment of a system interacting with its environment begins typically by identi-

fying the degrees of freedom associated with the “system” of interest and the “reservoir” which

represents the environment. The combined system is then represented by the density operator

ρ̂S+R, and we assume that this combined system is now “closed” in the sense that there are no in-

teractions with other systems that are not already described by this density operator. In a closed

system, the density operator evolves according to the Schrödinger-von Neumann equation

∂tρ̂ = − i
�
[H, ρ̂ ] , (1.16)

which gives the same evolution as the Schrödinger equation for the state vector. Hence a pure

state, treated as a closed system, will evolve into a pure state as a consequence of the “unitarity”

of the evolution equation. However, since we are generally interested in the system, which may

have only a few degrees of freedom, we would like to ignore the information associated with the

reservoir, which typically has many more degrees of freedom than we could possible monitor.

One approach along these lines is suggested by the form for expectation values of operators in

terms of the trace over the density matrix:

〈Â〉 = Tr[Âρ̂ ] . (1.17)

The average over the reservoir is then given by a partial trace taken over the reservoir degrees of
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freedom, resulting in a “reduced” density operator that describes only the state of the system:

ρ̂S = TrR[ρ̂S+R] . (1.18)

In general, the evolution of ρ̂S depends on its history, but in the case where the reservoir is

large, it should decorrelate rapidly, and so a Markovian approximation is justified. In this case

it is possible to derive a master equation for the evolution of ρ̂S [Cohen-Tannoudji92], which is

similar to the unitary evolution equation (1.16) but with extra nonunitary terms describing the

exchange of energy with the environment (dissipation or relaxation) and the redistribution of

populations due to fluctuations in the environment (diffusion) [Zurek91; Zurek94]. In terms of

the density matrix, these new terms cause the evolution of a pure quantum state into a mixed

quantum state, since the diffusion terms cause the coherences to be damped away [Zurek91;

Cohen-Tannoudji92]. Although the interferences that were initially in the system still exist,

they are moved out of the system and into the reservoir as the system and reservoir become

entangled through their interaction [Joos85].

The idea of decoherence, in its simplest form, is that the interaction with the environ-

ment can suppress the quantum coherences on a time scale that is many orders of magnitude

shorter than the time scale associated with relaxation [Zurek91]. So, while the environment has

a negligible impact on the “classical aspects” of the system, the coherences can be suppressed

effectively instantaneously in a macroscopic system. The resulting diagonal density matrix can

then be interpreted as a classical probability distribution.

The question that now arises is why the density operator should become diagonal in a

particular basis and not some other. The answer depends, of course, on the nature of the en-

vironmental interaction. It has been argued [Zurek81; Zurek82; Paz93] that the environment

naturally selects a preferred (“pointer”) basis, which consists of those states that are minimally

affected by the environment (i.e., they become minimally entangled with the environment).

These states are, in a sense, “robust” to the decoherence. This principle of “environment-

induced superselection” [Paz93] highlights the relation of decoherence to the measurement of a

quantum system. Such a measurement necessarily entails an interaction with the environment,
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namely the measuring apparatus [Paz99]. The nature of the interaction is tailored to the mea-

surement of some observable, and the minimally coupled states are determined by a combination

of the system Hamiltonian and the interaction Hamiltonian for the environmental coupling. A

measurement may require a strong interaction that dominates the system Hamiltonian, so that

the pointer states are the eigenvalues of the interaction Hamiltonian, leading naturally to the

idea that measurement “collapses” the system into an eigenstate of the operator correspond-

ing to the measured observable. The naturally selected states have also been demonstrated,

for example, to be localized states in phase space in the case of an environmental coupling (of

intermediate strength) to the position of a particle [Paz93], coherent states for the weakly cou-

pled harmonic oscillator [Zurek93], and energy eigenstates in the regime of weak coupling to

the environment, where the system Hamiltonian is dominant [Paz99]. Beyond the reduction to

a classical mixture, decoherence addresses the issue of how a quantum system is forced into a

definite state by the measurement interaction (notice that the only diagonal, pure-state density

operators correspond to the basis states). The “measurement” is made by the environment, in

that the entanglementwith the environment transfers information to the environmental degrees

of freedom. The statistical mixture that we are left with in the master-equation description is

a reflection of our ignorance of the state of the environment, which in a macroscopic system

is too complicated to keep track of even in principle. Since the outcome of the measurement

is intimately tied to the immensely complicated environment, the measurement appears as a

“random” collapse of the state vector. Thus, decoherence attempts to bring the measurement

process back within the unitary evolution framework of quantum mechanics, without appealing

to an extraneous notion of wave-function collapse, as in the orthodox interpretation of quantum

mechanics [Joos85; Zurek91].

1.3.2 Classical Chaotic Evolution

So far, we have seen that the interaction with the environment can take a state with quantum

features and convert it into a state that is sensible in a classical description. More important for

the correspondence principle in dynamical systems, however, is to understand how decoherence

can cause the evolution of a quantum system (which we have seen is particularly problematic in
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nonintegrable systems) to cross over to classical behavior.

One important tool for this discussion is the Wigner function (or distribution), which

facilitates the description of quantum dynamics in phase space. The Wigner function is defined

in terms of the density matrix as [Wigner32; Schleich01]

W (x, p) :=
1
π�

∫ ∞
−∞
dx′e2ipx′/�〈x− x′|ρ̂|x+ x′〉 . (1.19)

The Wigner function is not the only quantum phase-space distribution [Hillery84], but it has

several features that make it preferable to other distributions. Each marginal distribution of the

Wigner function, where one of the variables is integrated out, results in the probability distri-

bution corresponding to the other variable. The Wigner function itself, however, is not a joint

probability distribution, since it can take on negative values, which represent the interferences

or coherences of the quantum state. The evolution of the Wigner function (for one degree of

freedom) can be expressed in terms of the Moyal bracket of the Hamiltonian and the Wigner

function [Moyal49; Reichl92; Shiokawa95],

∂tW (x, p) = {H,W}M

:= −2
�
H(x, p) sin

[
�

2

(
←−
∂p

−→
∂x −

←−
∂x

−→
∂p

)]
W (x, p) ,

(1.20)

where the arrows on the derivative operators indicate the direction of operation. For a particle

Hamiltonian in “standard form,” H = p2/(2m) +V (x), the Moyal bracket can be written as the

Poisson bracket plus quantum “correction” terms,

∂tW = {H,W}P +
∞∑

n=1

(−1)n
�
2n

22n(2n+ 1)!
(∂2n+1

x V )(∂2n+1
p W ) . (1.21)

This equation is especially suitable for comparing the quantum evolution with the evolution of

a classical (“Liouville”) distribution ρL,

∂tρL(x, p) = {H, ρL}P , (1.22)

which is described only by the Poisson bracket. Notice that formally setting � = 0 in (1.21)

recovers the Liouville evolution (1.22), so that correspondence seems easy in this formulation;
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however, it must be emphasized that taking the limit � → 0 for a quantum system is not trivial

and may not be well defined without the assistance of external degrees of freedom.

It is immediately clear from the form of the Moyal bracket (1.21) that quantum-classical

correspondence is particularly simple for “linear” systems, such as a free particle or a harmonic

oscillator, because the quantum-correction terms vanish, yielding identical quantum and classical

evolution equations. This point was recognized early on by Schrödinger, when he constructed

the coherent states of the harmonic oscillator that mimic the classical oscillating trajectories

[Schrödinger26]. Hence, all that is needed for correspondence in these systems is the action of

decoherence for a mere instant (say, a single measurement), after which the quantum evolution

preserves the classicality of the state. In the more general and challenging case, the nonlin-

earities of the system dynamically generate quantum interferences in the course of evolution

[Habib98b]. The quantum terms cause the evolution to be unitary (notice that the classical

evolution, even for a closed system, is manifestly nonunitary [Habib00]), and thus it is these

quantum terms that are responsible for the suppression of classical chaos. (Note that this is

a much more meaningful way to treat the absence of chaos in quantum mechanics than sim-

ply appealing to the linearity of the Schrödinger equation.) The picture of quantum-classical

divergence according to [Zurek94] is that because of the exponential stretching of a Liouville

distribution under chaotic evolution, the distribution develops fine structure on a very short

time scale. Since the quantum-correction terms involve derivatives of the Wigner function, they

will be unimportant for an initially smooth distribution, but will quickly become important as

fine structure develops due to the classical part of the evolution. From this argument, we ex-

pect the log(1/�) breakdown time that we mentioned earlier as a consequence of exponential

chaotic divergence. To achieve correspondence in the nonlinear regime, a single measurement

at a single time during the evolution is insufficient to cause agreement between classical and

quantum. For example, in the case of dynamical localization it is insufficient to decohere the

system after the quantum break time, because although such an action would temporarily re-

store diffusive behavior, it would already be “too late,” as the subsequent evolution could never

catch up to the corresponding classical, continuously diffusing evolution. Rather, it is impor-
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tant to have continuous decoherence, which would effectively broaden the spectral components

of the evolution and never allow the discreteness of the spectrum to become manifest. In the

picture of [Zurek94], the interaction with the environment results in additional diffusive terms

in the evolution equation (corresponding to the diffusion terms in the master equation for the

density-matrix evolution) that tend to smooth the Wigner function. The resulting evolution

is a balance between the usual evolution, which wants to generate fine structure, and the de-

coherence, which wants to destroy the same fine structure. For sufficiently strong noise, the

fine structure can be tempered to the point where the quantum corrections remain unimpor-

tant, and the evolution is the same as that of the classical system subject to the same diffusive

interaction. In the semiclassical limit, only a very small amount of noise is required to keep the

quantum corrections under control (diffusion is only necessary on the scale of an � cell in phase

space), so that the effect on the classical chaos is effectively negligible. This argument gives a

nice picture of how decoherence can induce classical evolution, but we should note that there

are some subtleties that may still need to be addressed for certain systems, including the kicked

rotor [Habib00].

In studying the decoherence due to environmental interaction, it is possible to use an

approach based on the master equation [Brun96; Gong99; Bhattacharya00] that models all of

the effects due to the environment, or a simplified approach that employs an external noise

source [Ott84; Adachi88; Scharf94]. The latter approach is justified because the noise-induced

diffusion (not dissipation) is mostly responsible for the decoherence [Zurek94; Helmkamp96].

Furthermore, there are several levels at which correspondence has been examined in various the-

oretical studies. The most qualitative is the removal of nonclassical features by decoherence,

including the destruction of scarred states [Scharf94] and the restoration of the irreversibility

that is so conspicuously absent in unitary quantum evolution [Shiokawa95]. At the next level

is the quantitative agreement of quantum and classical expectation values [Ott84; Gong99;

Bhattacharya01]. Although such quantitative agreement is important, the expectation values

carry only a small amount of information about the system, which motivates the study of cor-

respondence at the level of ensembles and distribution functions [Adachi89; Habib98b]. Even
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here, though, it is possible to have agreement at the ensemble level even in a quantum regime

[Gong99], where it may still not be possible to associate classical trajectories with quantum

evolution. Hence the strongest form of correspondence is obtained in a quantum trajectory ap-

proach, where a decoherence-influenced wave packet traces out a chaotic trajectory with the

same properties as a corresponding classical trajectory (with noise added to the classical system

to account for the “direct” contribution of the decoherence) [Spiller94; Brun96; Bhattacharya00;

Scott01].

It has been argued that an appeal to the influence of the environment is not necessary

for correspondence, but rather a coarse-graining, as for example manifested in the Husimi dis-

tribution [Hillery84], can serve to remove the nonclassical structure of the Wigner distribution

[Casati95]. However, as pointed out in [Habib98b], such an approach will not in general be

successful because this coarse graining hides the nonclassical features in an essentially trivial

way (because it can be reversed); it does not change the dynamical evolution of the quantum

system, which as we have seen is certainly necessary for correspondence; and the coarse graining

forbids correspondence at the trajectory level, which is in a sense the most impressive form of

correspondence. The importance of environmental noise in explaining chaos is then somewhat

ironic. Classical chaos is usually understood as arising solely from the system itself and not from

an external noisy source, as we have pointed out in Section 1.1. At a deeper level, though, a

certain amount of noise is necessary to obtain chaotic behavior from quantum mechanics. But

because this noise level can be exceedingly small on macroscopic scales, the chaotic instability

arises operationally from the “classical” dynamics rather than the perturbative noise.

1.3.3 Experiments on Decoherence

Despite the vast body of theoretical work on decoherence, there have been relatively few ex-

periments dealing directly with the effects of decoherence on quantum systems. The situation

is beginning to change now, though, due to the necessity of combating decoherence in systems

where quantum coherence is very important, such as in quantum computers [Steane97]. In

linear systems, there have been several impressive and clean experiments. The most funda-
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mental linear quantum problem, the two-slit experiment, has been realized as an atom interfer-

ometer, where light scattered by the atoms serves as a decohering measurement [Chapman95;

Kokorowski01]. Decoherence has also been studied in an entangled Rydberg atom/microwave

cavity system [Brune96], where the cavity acts as a measuring device for the internal atomic

state. The decoherence of a superposition of motional states has also been studied in an ion trap

[Myatt00; Turchette00].

The first experimental studies in decoherence actually began with nonintegrable sys-

tems, where the effects of noise on the ionization of driven hydrogen [Bayfield91; Sirko93;

Koch95; Sirko96] and rubidium [Blümel89; Arndt91; Blümel91; Benson95] Rydberg atoms were

studied. Especially relevant to the work on correspondence that we discuss in Chapter 4 are

Refs. [Bayfield91; Sirko93; Koch95], where noise added to the microwave driving of the Rydberg

atoms led to improved agreement with classical predictions of ionization thresholds (which is an

agreement at the expectation-value level, in contrast to the distribution correspondence that we

present in Chapter 4). There has also been some work investigating the effects of temperature

on conductance fluctuations in mesoscopic semiconductor quantum dots [Clarke95; Huibers98].

Optical-analog experiments open up the possibility for decoherence experiments in wave-chaos

systems, where perturbations to diffraction-grating positions in an optical kicked-rotor realiza-

tion led to destruction of dynamical localization [Fischer00; Rosen00]. Again, atom optics has

contributed several experiments to this area, the discussion of which we defer until the next

section.

1.4 Atom Optics

The field of atom optics is generally concerned with the manipulation of atoms using electro-

magnetic fields or material objects. In a sense, this field is the dual of traditional optics, where

matter is used to manipulate electromagnetic (optical) fields. By far the majority of work in this

field involves the optical manipulation of atoms, which is the case in this dissertation, although

notable exceptions include the trapping of ions by electric fields [King99], the trapping of neu-

tral atoms in static magnetic traps [Migdall85], the reflection of atoms by the Casimir–van der
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Waals potential [Shimizu01], and the diffraction of atoms by lithographically fabricated gratings

[Keith91]. The important concept in the optical manipulation of atoms is that light carries mo-

mentum. The momentum carried by photons is ordinarily very small, and macroscopic objects

are generally immune to optical momentum effects. However, the momentum transferred to

an atom when it scatters photons can have a very significant effect on its motion. Although

the deflection of atoms by light (“radiation pressure”) dates back to 1933 [Frisch33], it was not

until the advent of lasers that much progress was made in this field. Subsequently the cooling

of trapped ions using laser light was proposed [Hänsch75; Wineland75] and demonstrated soon

thereafter [Wineland78; Neuhauser78]. The development of trapping and cooling of neutral

atoms introduced more difficulties, though, because the optical forces are so weak compared to

the electric-field forces used in ion traps, and so thermal atoms from an atomic beam were very

difficult to trap. But the slowing of a thermal beam of atoms [Phillips82] and the subsequent

demonstration of laser cooling of neutral atoms in three dimensions (using “optical molasses,”

where laser light acts as an effective damping medium for the atoms) [Chu85] led to magnetic

[Migdall85] and optical [Chu86] traps for atoms.

It was, however, the addition of a magnetic field to optical molasses that revolution-

ized atomic physics. This idea, due to Jean Dalibard [Chu98], resulted in the efficient cooling

and trapping of atoms from an atomic beam [Raab87] in a device now known as the magneto-

optic trap (MOT). The MOT uses optical molasses to cool atoms, while simultaneously taking

advantage of the Zeeman shift of the atomic energy levels in a magnetic field to introduce a

spatial dependence on the radiation pressure and hence confine the atoms to the center of the

trap. The MOT was considerably simplified when it was demonstrated that atoms could also be

trapped directly from an ambient atomic vapor [Monroe90], and it is now relatively simple to

construct a very basic MOT [Wieman95]. The MOT is now a true workhorse in atomic physics,

as it provides a convenient, cold, localized, and well-controlled sample of atoms that can be used

as the starting point for a wide range of experiments [Adams97], including Bose-Einstein con-

densation [Anderson95; Bradley95; Davis95], atom interferometry [Kasevich91], cold collisions

and photoassociation spectroscopy [Gardner95], electric dipole moment searches [Bijlsma94],
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precision atomic clocks [Gibble93], and atom lithography [Timp92; McClelland93]. Indeed, all

the experiments that we describe in this dissertation are performed with a cesium MOT loaded

from atomic vapor, much like the setup in [Monroe90], as discussed further in Chapter 3. For

some of the experiments that we will discuss, much more elaborate preparation of the atoms is

necessary after the initial trapping and cooling of the atoms, as described in Chapter 5.

1.4.1 The Dipole Force and Optical Lattices

The forces used in a MOT are due to the absorption and spontaneous emission of light. Because

the direction of a spontaneously emitted photon is random, this force is incoherent and results in

the diffusion of momentum on the scale of the atomic recoil momentum due to a single photon

scattering event (the “photon-recoil momentum”). Although this force is useful for the collec-

tion and preparation of atoms, the subsequent manipulation of atoms is greatly facilitated by the

use of the dipole force, which does not involve dissipation or diffusion, and is thus a coherent in-

teraction. The dipole force is a result of the interaction of an optical field and the atomic dipole

moment induced by the field. The dipole interaction energy has the form−d ·E, where d is the

atomic dipole moment and E is the electric field. Since the induced dipole moment is propor-

tional to the applied field, the optical potential is proportional to the field intensity, and thus the

dipole force is proportional to the gradient of the field intensity. In a photon picture, this force

arises as a consequence of stimulated scattering of photons by the atom, where the redirection of

a scattered photon results in a corresponding “recoil” by the atom. This effect is also known as

the ac Stark shift or light shift of the atomic energy, and was first observed by Cohen-Tannoudji

[Cohen-Tannoudji98]. Thus, it is possible to create potentials to influence atomic motion by

appropriately tailoring an optical-field profile. Also, if the optical field is tuned sufficiently far

from the nearest atomic resonance, the interaction will be dominated by the dipole force, and

spontaneous forces will be negligible.

One particular configuration in which the dipole force is important is the optical lat-

tice, which is a periodic intensity pattern formed by the interference of multiple beams. Al-

though there are many different possible configurations of optical lattices [Jessen96], the one
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that plays a central role in the experiments in this work is the simplest possible lattice, a stand-

ing wave of light, which is a one-dimensional, linearly polarized optical lattice. We discuss this

configuration in detail in Chapter 2, but the basic result is that the atomic motion in such a

standing wave is that of a quantum pendulum (without periodic boundary conditions). This sys-

tem can then be viewed as an ideal one-dimensional crystal with long coherence times [Niu96;

Madison98a; Fischer01b], leading to interesting and clean studies of effects in condensed-

matter physics [Wilkinson96b; Dahan96; Fischer98; Madison98b; Madison99]. Viewed also

as a one-dimensional dynamical system, this system gives rise to interesting tunneling effects

[Morrow96; Bharucha97a; Madison97], including non-exponential decay [Wilkinson97] and the

quantum Zeno and anti-Zeno effects [Fischer01a].

1.4.2 Atom Optics and Quantum Chaos

The fields of quantum chaos and atom optics became “entangled” with the proposal by Gra-

ham, Schlautmann, and Zoller [Graham92] to observe dynamical localization in the deflection

of an atomic beam crossing through a phase-modulated optical lattice. It was realized here in

the group of Mark Raizen that the beam setup could be “collapsed” and performed with cold

atoms prepared by a MOT and exposed to a modulated optical lattice in place. An apparatus

using trapped sodium atoms was constructed [Robinson95b; Bharucha97b], and the manifes-

tations of dynamical localization [Moore94] and islands of stability (and other features in the

transition from classical stability to chaos) in phase space [Robinson95a] were studied in the

phase-modulated lattice. (It was also in these experiments that the “ballistic-expansion imaging

method” of measuring atomic momentum distributions was first employed. In this technique

the atoms expand freely after the lattice interaction until they have expanded far beyond the

initial MOT size, then they are frozen in place by optical molasses, and the distribution is pho-

tographed by a CCD camera.) In the phase-modulated system, the theoretical understanding

of dynamical localization came about through an approximate mapping onto the kicked-rotor

problem, and this system was soon also directly realized [Moore95]. In these experiments, the

dynamical evolution leading to localization was studied, along with the “quantum resonance”

phenomenon, which is expected to give rise to ballistic transport but was manifested as a late-
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time Gaussian distribution. The atomic dynamics in an amplitude-modulated standing wave,

which is the same system that we use in Chapter 6 to study chaos-assisted tunneling, were also

studied using this apparatus to address the necessity of considering quantum chaos in analyz-

ing a system as simple as atoms crossing transversely through an unmodulated optical lattice

[Robinson96]. The work in this first-generation sodium apparatus is discussed in more detail in

[Bharucha99], as well as in two dissertations [Robinson95b; Bharucha97b].

The next natural direction of the quantum-chaos experiments was to examine the ef-

fects of decoherence, now that the quantum suppression of chaos had been observed. As these

experiments involve transport to higher momenta than in the localized case, the sodium-based

experiment was not suitable to carry out these studies [Robinson95b]. To address these prob-

lems with the “momentum boundary” [Klappauf99], we constructed a second-generation ap-

paratus based on trapped cesium, which due to the longer wavelength of the atomic resonance

and larger atomic mass effectively yields a better fidelity to the δ-kicked rotor over a wider mo-

mentum range (see Section 4.4.4 for details). The quantum-chaos experiments carried out on

this new apparatus are reviewed in this dissertation as well as in Bruce Klappauf’s dissertation

[Klappauf98c], and meanwhile the sodium apparatus was put to good use in the tunneling and

solid-state experimental efforts described in the previous section. The destruction of localiza-

tion by amplitude noise in the kicks as well as dissipation due to the presence of a weak optical

molasses were observed in this experiment [Klappauf98b], where it was found that late-time en-

ergy diffusion was increased, and the momentum distributions made a transition from the local-

ized exponential profile to a classical-like Gaussian profile. Around the same time, the increased

energy growth due to spontaneous emission induced by the optical lattice itself was observed by

the group of Nelson Christensen [Ammann98], but it should be noted that there may be some

difficulties in interpreting the results of this latter experiment due to the influences of the classi-

cal momentum boundary and the stochastic dipole force [Habib98a]. We subsequently extended

this initial work on decoherence and showed that quantitative quantum-classical correspondence

at the level of expectation values and momentum distributions could be achieved with a suffi-

cient amount of amplitude noise, even in a manifestly quantum regime [Steck00; Milner00].
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This work on decoherence and correspondence in the kicked rotor is discussed in much more

detail in Chapter 4.

There have also been several other interesting avenues of experiments on quantum

chaos and quantum transport in atom optics. We revisited the quantum resonance phenomenon

using the cesium apparatus, and due to much improved signal resolution and noise levels over

the original study of [Moore95], we were able to resolve the ballistic component of the motion

[Oskay00]. There have also been related studies by the group of Keith Burnett [Oberthaler99;

Godun00] on the kicked rotor near a quantum resonance but modified by a constant acceler-

ation. Ballistic transport was likewise observed in these experiments, but the transport could

be made directional (asymmetric) due to the influence of the acceleration. Continuing in

the vein of global quantum nonintegrable transport, the suppression of diffusion by classical

cantori was studied by the Christensen group [Vant99], the effects of quasiperiodic kicking

were studied by a group at the Université des Sciences et Technologies de Lille [Ringot00],

and we provided experimental evidence for a universal theory of quantum diffusion by Jianxin

Zhong, Qian Niu, Roberto Diener, and others [Zhong01]. More recently, work in this area

has moved towards the study of mixed phase space using localized initial conditions. In this

context we have observed chaos-assisted dynamical tunneling [Steck01], and a collaboration

of researchers at NIST-Gaithersburg under the direction of William Phillips and Steven Rol-

ston and researchers at the University of Queensland under the direction of Gerard Milburn,

Halina Rubinsztein-Dunlop, and Norman Heckenberg have also observed dynamical tunneling

in a similar system (using a Bose-Einstein condensate) but in a more manifestly quantum and

strongly coupled regime [Hensinger01] (some earlier work of the Queensland group is discussed

in [Hensinger00]). Our work on chaos-assisted tunneling is described in detail in Chapter 6.

Finally, we have performed experiments on a modified version of the kicked-rotor system that

leads to spatial localization of the atoms, with applications to atom lithography. The results of

this work will be presented in future publications [Oskay01a; Oskay01b].




