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Abstract

The quantum kicked rotor is studied experimentally in an atom-optics setting, where we observe the center-of-mass

motion of cold cesium atoms. Dynamical localization in this system typically suppresses classical diffusive motion, but is

susceptible to the addition of various forms of noise. We study in detail the effects of timing noise, where variations are

introduced to the times at which the kicks occur. This noise is particularly interesting because it does not directly induce

momentum diffusion. However, it is found that the addition of timing noise efficiently destroys both the classical

correlations that give rise to fluctuations in the classical diffusion rate as well as quantum coherences that lead to

dynamical localization.

� 2002 Elsevier Science Ltd. All rights reserved.

The interface between quantum and classical dynamics serves as a testing ground for decoherence and is a central

feature of mesoscopic physics. It is believed that decoherence, the destruction of quantum interferences, is necessary to

reconcile the distinctly different behavior in the quantum and classical limits [1]. Experimental progress towards un-

derstanding decoherence has been made on a number of different fronts. One system that has the advantage of con-

ceptual simplicity is a perturbed atom interferometer [2,3], where spontaneous scattering introduces dissipation into the

system. Decoherence has also been observed with Rydberg atoms coupled to microwave cavities [4] and motional

Schr€oodinger cat states in an ion trap [5].

One of the most interesting settings in which to study correspondence is a classically chaotic system, where quantum

effects suppress classical diffusive motion [6]. While the majority of research in decohering effects on ‘‘quantum chaos’’

has been theoretical in nature [7–11], there has been a steadily growing body of experimental work in recent years. Some

of the pioneering experiments in this field have been conducted by studying the internal dynamics of Rydberg atoms

[12–15]. Mesoscopic condensed-matter systems have provided another important testing ground [16]. Recent great

advances in atom optics, the manipulation of atomic de Broglie waves, have also made it possible to study quantum

dynamics by observing the center-of-mass motion of cold atoms [17,18]. Here, laboratory tests have allowed the direct

observation of such phenomena as dynamical localization [19], quantum resonances [20], and chaos-assisted tunneling

[21].

Of particular interest is dynamical localization [22], a quantum suppression of classically chaotic (diffusive) motion.

A prototypical system is the kicked rotor, or standard map, which has been a model system for the study of both

classical and quantum chaos. The kicked rotor is a particularly suitable system for experimental study because it can be

directly realized by exposing cold atoms to a pulsed standing wave of light. Classical particles in such a chaotic potential

tend to exhibit diffusive behavior, where the energy of the system grows linearly as a function of time. On the other

hand, quantum particles in the same potential exhibit diffusive motion for only a short time, after which the energy
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growth slows down. The contrasting behavior in the quantum and classical limits makes the system attractive for the

study of quantum–classical correspondence.

In previous work we observed the effects of two different types of perturbations to the kicked-rotor system, both of

which are capable of disturbing the fragile quantum coherences that cause dynamical localization. The first pertur-

bation is a simple form of amplitude noise, which is added to the kicked-rotor experiment by allowing variation in the

strength of the individual kicks [23]. In this case, we have observed a transition from quantum to classical behavior as

the noise level is increased. For strong enough driving, we observed atomic motion that is consistent with fully classical

dynamics over the time scales of our experiments [24,25]. The second type of perturbation is a dissipative interaction

that is introduced by allowing the atoms to scatter near-resonant light [23]. The introduction of dissipative forces

complicates the dynamics considerably and makes the interpretation of the results more difficult. In our experiments

with dissipation, optical molasses light was used to induce spontaneous emission but also led to an overall cooling effect.

In similar experiments conducted elsewhere [26], the light used to introduce dissipation may have instead led to an

overall heating effect. Additionally, an optical analogy of the kicked-rotor system has been used to study the effects of

noise in this system [27]. Outside of the kicked-rotor system, we have studied amplitude noise in a different setting, to

observe its effects on chaos-assisted tunneling [28]. In this case, the noise breaks the coherences that lead to quantum

tunneling between regions of phase space.

We now observe the effects of an additional variety of noise on the kicked rotor. Instead of changing the amplitude

of the individual kicks, we allow variation in the timing of the kicks. In this case, we see a transition from quantum

behavior to (qualitatively) classical behavior, as occurs in the case of amplitude noise. The nature of the timing noise

sequence and improvements to the experimental apparatus contribute to an increase in the signal-to-noise ratio in this

data set, as compared to the earlier results with amplitude noise.

In our experiments, we study the center-of-mass motion of ground-state cesium atoms in a modulated 1D optical

lattice. The optical lattice consists of a standing wave of light from a Ti:sapphire laser. With the proper choices of laser

intensity and detuning from atomic resonance, the conservative light forces on the atom can be significant while the

dissipative interactions can simultaneously be made minor enough to permit a detailed study of coherent quantum

dynamics. In the far-detuned limit, the atom remains in the ground state and its behavior is that of a point particle in

the external optical potential [17]. The well depth of the optical dipole potential (ac Stark shift) depends upon the

intensity of the light, and so the standing wave interference pattern leads to a spatially dependent force upon the atom.

We may write the Hamiltonian for an atom with position x and momentum p as

Hðx; pÞ ¼ p2

2m
þ V0 cosð2kLxÞ; ð1Þ

where m is the mass of the atom, V0 is the well depth of the potential, and kL is the wave number of the light. This

Hamiltonian describes dynamics that are equivalent to that of a simple pendulum, where the position and linear

momentum of the atom in the optical lattice play the roles of the pendulum angle and angular momentum, respectively.

Our potentials are created dynamically using light gated by an acousto-optic modulator (AOM) so that we have a

fine degree of control over the intensity of the light. In the kicked-rotor experiments, we modulate the intensity of the

optical lattice as a series of short pulses with period T. In this case we have the kicked-rotor Hamiltonian

Hðx; p; tÞ ¼ p2

2m
þ V0 cosð2kLxÞ

X

n

F ðt � nT Þ; ð2Þ

where F ðtÞ is a pulse shape function of unit amplitude and duration tp, and tp � T .
It is straightforward to transform into a set of scaled (natural) units that contain the minimum number of constants

and facilitate comparison with theoretical models. Let us define the transformations as x0 ¼ 2kLx, t0 ¼ t=T , p0 ¼ p–k=2�hkL,
f ðt0Þ ¼ F ðtÞ=g, K ¼ ð–k=�hÞgTV0, and H 0 ¼ ð–k=�hÞTH . The pulse integral g ¼ 1

T

R1
�1 F ðtÞdt, is taken such that g / tp andR1

�1 f ðtÞdt ¼ 1. We have also defined the constant –k ¼ 8xrT , where the recoil frequency xr ¼ �hk2L=2m contains all of the

fixed atomic parameters. If we examine the commutation relation ½x0; p0� ¼ ð–k=�hÞ½x; p� ¼ i–k, we find that –k plays the role

of a scaled Planck constant that tells us the relative action scale of the system compared to �h. Under these transfor-

mations, we may rewrite the kicked-rotor Hamiltonian as

Hðx; p; tÞ ¼ p2

2
þ K cos x

X

n

f ðt � nÞ; ð3Þ

after dropping the primes. The dynamics of the classical kicked rotor are completely specified by the sole parameter K,

the stochasticity parameter. For KJ 4, where most of our experiments take place, the kicked-rotor system is pre-

dominantly chaotic. The dynamics of the quantum kicked rotor are governed by both K and –k.
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As a minor digression, consider the limit where the pulse function is a d-function so that tp ! 0 while K is constant.

In this limit the Hamiltonian becomes that of the d-kicked rotor, a paradigm of classical and quantum chaos. By in-

tegrating the d-kicked-rotor equations of motion over one period of the kicking, they reduce to the standard mapping

[29],

pnþ1 ¼ pn þ K sin xn;

xnþ1 ¼ xn þ pnþ1;
ð4Þ

where ðxn; pnÞ and ðxnþ1; pnþ1Þ are the coordinates of a particle before and after the nth kick. There are some subtle

differences between the dynamics in the cases with d-function pulses and finite-duration pulses like those found in

experiments. The most important effect is that in the case of finite-duration pulses, the amount of momentum transfer to

a particle during a kick (i.e., the value of K) depends upon the particle�s momentum prior to the kick [20]. This effect is

minor for the parameters of the present experiments [30], but it can become important for precise comparison with

theoretical models [25].

Timing noise is introduced to the pulse sequence by allowing variation in the period T between kicks, which has been

held constant in previous experiments. Let us now replace the constant T with a step-dependent period Tn ¼ T þ dTn,
where dTn is a step-dependent perturbation to the period. We consider only a uniform probability distribution

P ðdTnÞ ¼ 1=dTp�p, if jdTnj6 1
2
dTp�p, and zero otherwise. This uniform distribution is similar to the one implemented for

the studies of amplitude noise. The peak-to-peak range dTp�p is specified as a percentage of T, so that 100% noise means

that a kick may be displaced by any value in the range �T=2. In the experiment, we would like to avoid approaching

100% noise so that the pulses, which have nonzero duration, do not overlap. This fact provides a natural limit to the

amount of noise that can be applied. As it turns out, we did not approach this limit because the kicked-rotor system is

extremely sensitive to timing noise, and we did not need to study levels higher than 20%.

This realization of timing noise is a cumulative one. The time that each kick occurs is T þ dTn after the previous kick,
rather than simply being dTn displaced from the time that the kick would occur in the absence of applied noise. This

distinction is important because kicks occurring later in the sequence can potentially become far displaced from their

original times. By contrast, the experiments with amplitude noise allowed for variation in the amplitude of each kick,

where the range of variation was centered about the mean kick amplitude.

In the kicked-rotor experiments with amplitude noise, the perturbations were applied directly to the value of K. For

timing noise, the variation in T enters the classical dynamics in a slightly less obvious manner. The standard map

changes under the influence of timing noise to be

pnþ1 ¼ pn þ K sin xn;

xnþ1 ¼ xn þ ð1þ �nÞpnþ1;
ð5Þ

where �n � dTn=T . From this modified mapping, it is clear that timing noise enters the equations of motion in a different

manner than does amplitude noise. One immediate effect of this is that timing noise is inherently nonperturbative, and

even a small value of �n can cause large changes to the system if p is large. Intuitively, the addition of timing noise

should have a substantial effect on the corresponding classical dynamics, since structures in the standard map surface of

section are only visible through stroboscopic (periodic) sampling.

In Fig. 1, we show some features of the noisy mapping Eq. (5) for different levels of timing noise. The energy after 35

kicks is plotted as a function of K. For the case with zero added noise, there is a clear oscillation in this curve as a result

of classical correlations in the system dynamics [31,32]. The short-term diffusion rates oscillate about the quasi-linear

(random-phase approximation) diffusion rate, E=t ¼ K2=4. The classical correlations are gradually destroyed as more

noise is added, and the behavior of the system tends towards the quasi-linear limit. An important consequence is that

the classical diffusion rate can either increase or decrease as the noise level is increased, depending upon the value of K.

Fig. 1 illustrates an additional feature of timing noise, which is that it does not cause intrinsic momentum diffusion.

Whereas amplitude noise can itself lead to diffusion, timing noise changes the diffusion rate only through the destruction

of correlations.

The effects of timing noise on the kicked-rotor dynamics are qualitatively similar to those of amplitude noise, where

the perturbations gradually destroy both classical correlations and quantum interferences in the system. To examine the

effects of timing noise on the quantum dynamics of our experiment, we must note that the variable T enters not only

into the definition of K, but also into the definition of –k. For this reason, the (constant) average value hT i is used to

compute the values of K and –k. Relatively weak levels of timing noise are needed to destroy dynamical localization.

However, the noise is only weak in the sense that we do not approach the maximum value of noise that could po-

tentially be applied to the system. A direct comparison between the sensitivity to amplitude noise and timing noise is
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complicated by the fact that the timing noise realization is cumulative in nature, whereas the amplitude noise experi-

ments realization was not.

Our experimental apparatus is similar to that described previously [21,25], with several minor modifications. We

begin by collecting �106 cesium atoms from background vapor in a standard magneto-optic trap (MOT) [33], over the

course of 4 s. The temperature of atoms released directly from the MOT is of order 10 lK. After collecting the atoms,

we turn off the MOT and further cool the atoms with a 3D-lattice cooling scheme similar to that developed by Weiss

and his collaborators [34]. The atoms are loaded from the MOT into a 3D, far-detuned, linearly polarized optical

lattice. This lattice, tuned 9 GHz to the red of the cesium 6S1=2, F ¼ 4 ! 6P3=2, F ¼ 5 cycling transition, serves to

confine the atoms. Once the atoms are confined, the current to the MOT quadrupole magnet coils is turned off. The

fields decay with a time scale of several milliseconds, but eddy currents from the shut-off lead to slowly varying fields at

the time of the interaction with the 1D standing wave. Although the fields may be on the order of 100 mG, they are not

expected to affect the interaction. While in the 3D lattice, the atoms are further cooled in 3D by a weak optical molasses,

which is tuned �50 MHz to the red of the cycling transition. After the atoms are cooled in this configuration for 5 ms,

the far-detuned lattice light is adiabatically extinguished so that the atoms trade their local confinement for a reduction

in temperature. After these cooling processes are completed, the atoms are exposed to a brief (150 ls) pulse of ‘‘re-

pumping’’ light tuned directly to the 6S1=2, F ¼ 3 ! 6P3=2, F ¼ 4 resonance to ensure that the atoms are in the 6S1=2,
F ¼ 4 state.

The final 1D temperature, as measured along the 1D optical lattice (horizontal) axis, is typically 700 nK, corre-

sponding to a nearly Gaussian momentum distribution with width rp ¼ 1:9�hkL. The temperature of the distribution as

measured along the vertical axis is roughly a factor of two higher, due to imbalances in the 3D-lattice beam intensities.

We have achieved lower temperatures with 3D-lattice cooling by using a larger detuning and a longer cooling period

[21], however increasing the detuning also lowers the well depth V0.
After cooling and optical pumping, the atoms are exposed to the pulsed standing wave that creates the kicked-rotor

potential. The 1D optical lattice light originates from the same laser that generates the 3D lattice, again tuned 9 GHz to

the red of resonance. An AOM modulates the continuous-wave laser beam to form the ‘‘kicking’’ pulses. For this set of

Fig. 1. Timing noise effects on the classical kicked rotor. The modified standard mapping in the presence of timing noise, Eq. (5), is

computed for 35 iterations (kicks). The final energy E ¼ hp2i=2 is plotted as a function of K for various noise levels. The timing noise

levels shown are 0% (heavy short dash), 1% (heavy solid), 5% (light dash), and 20% (light solid). For each of the noise cases, the same

set of 105 initial conditions was used, randomly chosen with x and p within �p. An independent realization of noise was used for each

computed trajectory. Also plotted is the quasi-linear diffusion curve, E ¼ K2t=4 (heavy long dash), where t ¼ 35.
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experiments, the pulse length was fixed at tp ¼ 300 ns, and the (mean) time between pulses was T ¼ 20 ls so that
–k ¼ 2:08. The AOM is driven by an arbitrary waveform generator with time resolution of 100 ns, which introduces a

fine degree of quantization in the absolute time between any two pulses.

As soon as the kicking sequence is completed, the detection sequence begins. The atoms are allowed to ballistically

expand for 15 ms (as measured from the beginning of the kick sequence) so that the atomic momentum distribution is

converted into a position distribution by the time-of-flight method. The distribution is then frozen into place by an

optical molasses and the fluorescence is imaged with a 10 ms exposure on a charge-coupled device camera. The camera

image effectively yields the 1D momentum distribution along the standing-wave axis, and we commonly integrate this

distribution to find the kinetic energy E ¼ hp2i=2.
The results of our measurements are shown in Fig. 2. The error bars on the data shown in this paper are purely

statistical in nature, representing the standard deviation of the values measured in a series of separate measurements.

Each point represents an average over 20 measurements, each with an independent realization of the timing noise. The

largest source of uncertainty in our experiment is the absolute value of K, which is only determined to an accuracy of

�10%. Also note that for the experimental data reported here, the values of K are scaled by ð2=–kÞ sinð–k=2Þ to simplify

comparison with the classical kicked rotor [9,32,35]. There are several sources of systematic errors in the experiment,

such as the effects of nonzero pulse duration. These effects are primarily important for comparison with detailed

theoretical models, and they are reviewed in detail elsewhere [25].

In Fig. 2 we observe the effects of timing noise on the system energy growth as a function of time, at a constant value

of K ¼ 8. Without added noise, the energy evolution shows a signature of dynamical localization that appears as a

reduction in the rate of energy growth after about 10 kicks. The energy growth does not completely cease, and we

Fig. 2. Timing noise effects on energy evolution in the experiment. The dimensionless energy E ¼ hðp=2�hkLÞ2i=2 is plotted as a function

of time for several levels of timing noise, near K ¼ 8. The noise levels are 0% (filled circles), 0.5% (open circles), 1% (filled squares), 2%

(open squares), 3% (filled triangles), 10% (open triangles), and 20% (diamonds), for which the energy values are increasing mono-

tonically at this value of K. The data points are collected for every five kicks, and the lines connect these points to guide the eye. The

statistical error bars on most of the data points are too small to be clearly resolved in this plot.
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attribute this diffusion to residual decohering processes such as phase noise in the standing wave. For as little as 0.5%

added timing noise, there is a significant change in the long-time diffusion rate. The energy growth begins to saturate

when we add timing noise at about the 3% level. This is in contrast to the amplitude noise experiments, where we had to

make severe changes to the pulse sequence before the energy growth saturated. This saturation phenomenon is to some

degree an effect of the particular value of K that we have chosen, in this case near K ¼ 8.

We also measured the ensemble energy as a function of K after a constant number of kicks (35 for the data shown

here), and the results are shown in Fig. 3. This figure bears some similarities to its classical counterpart, Fig. 1. It is clear

that the presence of noise gradually washes out the oscillations in the curves as the noise level increases. The most

important difference between the experiment and the classical simulations is that the energy in the experiment grows as

low levels of noise are applied, independent of the value of K. We believe that this results from the destruction of

dynamical localization, which begins to bring the energy values closer to those that we would expect from classical

dynamics. As the level of noise increases, the energy at certain K values does eventually decrease along with the classical

model, but does not go below the zero-noise energy level. Quantitative comparison between this figure and Fig. 1 is not

trivial because of a number of systematic effects that generally serve to reduce the effective energies that we measure in

the experiments [25].

For the value of K chosen in Fig. 2, which is located in the first local minimum of the EðKÞ curve, most of the energy

growth occurs by the 3% noise level. Near the first local maximum of the curve in Fig. 3 (near K ¼ 2p), the energy

Fig. 3. Timing noise effects on EðKÞ curves in the experiment. The dimensionless energy E ¼ hðp=2�hkLÞ2i=2 is plotted as a function of

the stochasticity parameter K for several levels of timing noise. The noise levels are 0% (filled triangles, up), 0.5% (filled squares), 1%

(filled triangles, down), 2% (filled circles), 3% (filled diamonds), 5% (open triangles, up), 8% (open squares), 10% (open triangles,

down), and 20% (open circles), shown monotonically increasing in energy near K ¼ 8. For this data set, the energy was measured after

a sequence of 35 kicks.
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growth first rises and then falls as a function of the noise level, indicating that the noise becomes strong enough to break

the correlations that give rise to that maximum. Indeed, one of the major effects of the noise is to wash out the os-

cillations in the curve, just as we saw in the amplitude noise case. It is clear from this data set that the rate of energy

growth seen in Fig. 2 as a function of the noise level is not a universal feature, but depends upon the initial parameters

chosen. Even in the absence of noise, it is most possible to observe clear dynamical localization in the first local

minimum of the EðKÞ curve, near K ¼ 8. Outside of this region, the quantum dynamics can be influenced strongly by

regions of anomalous diffusion in the corresponding classical dynamics.

Finally, in Fig. 4 we plot (for several values of K) curves that directly show the energy growth as a function of the

noise level. The energy of the system is generally increased by the addition of low levels of noise, which destroy

the fragile coherences that lead to dynamical localization. Higher levels of timing noise can either increase or decrease

the energy of the system as the classical correlations are washed out. Naturally, the sign of this change depends upon

whether we began at the peak or the valley of the undriven diffusion curve.

In conclusion, we have observed the effects of timing noise on the kicked-rotor system. A transition from quantum to

qualitatively classical behavior appears as a universal growth in the system energy as low levels of noise are applied. For

higher levels of noise, the system responds as a classical system might to the destruction of classical correlations, re-

spectively increasing or decreasing the diffusion rate as the noise level is increased so as to approach random-phase limit

behavior. It is hoped that this work will provide a basis for comparison with theory and will stimulate theoretical

research in this field.
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Fig. 4. Energy growth as a function of timing noise level in the experiment. The energy E ¼ hðp=2�hkLÞ2i=2 is plotted as a function of

the timing noise level for three levels of the stochasticity parameter K. The values of K are 6.8 (circles), 7.85 (squares), and 8.65

(triangles). For this data set, the energy was measured after a sequence of 35 kicks.
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