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Quantum chaos with cesium atoms: pushing the boundaries
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Abstract

Atomic motion in pulsed, periodic optical potentials provides a unique experimental testing ground for quantum chaos. In
the first generation of experiments with sodium atoms we observed dynamical localization, a quantum suppression of chaotic
diffusion. To go beyond this work we have constructed an experiment with cold cesium atoms, and report our first results
from this system. The larger mass and longer wavelength push out the momentum boundary in phase space that arises from
the nonzero duration of the pulses. This feature should enable the study of noise effects and dimensionality on dynamical
localization. We propose a new method of quantum state preparation based on stimulated Raman transitions for studies of
mixed phase space dynamics.c©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The interface between nonlinear dynamics and
quantum mechanics has become an active area of
research in recent years. One of the key results in
this field, due to Boris Chirikov and co-workers, is
dynamical localization. This striking effect is a quan-
tum suppression of classical (chaotic) diffusion, and
has stimulated a great deal of interest and discus-
sion since it was first predicted almost 20 years ago
[1–9].

Rydberg atoms in strong microwave fields pro-
vided the first experimental system that addressed
this problem, and the observed suppression of ioniza-
tion was attributed to dynamical localization [10–13].
To go beyond these results, it is important to find
new experimental systems to investigate dynamical
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localization as well as other problems in quantum
chaos.

In general, the observation of dynamical localiza-
tion requires a predominantly chaotic (classical) phase
space, because diffusion can be restricted by residual
stable islands and by classical boundaries according
to the Kolmogorov, Arnol’d, Moser (KAM) theorem
[14]. In addition, the duration of the experiment must
exceed the “quantum break time”, when quantum ef-
fects manifest themselves. Finally, the system must be
sufficiently isolated from the environment that quan-
tum interference effects can persist. All of these con-
ditions can be satisfied by a system of cold atoms
that are exposed to time-dependent standing waves of
light [15,16]. The typical potentials in this system are
highly nonlinear, resulting in chaotic classical dynam-
ics. Since dissipation can be made negligibly small in
this system, quantum effects can become important.
These features led to a series of experiments in our
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group on dynamical localization and quantum chaos
with cold sodium atoms, establishing atom optics as a
new experimental testing ground for the field [17–21].
The simplest experimental configuration in that work
was a standing wave of light that was pulsed on peri-
odically. This system was an experimental realization
of the kicked rotor, which has been a paradigm for
classical and quantum chaos for many years.

To go beyond this first generation of experiments,
we wish to address several key topics. The first is to
study the effects of noise and dissipation on dynamical
localization. The signature in this case is the destruc-
tion of localization, with subsequent diffusive growth
in momentum [22–24]. A second direction is to study
the role of dimensionality on dynamical localization.
While exponential localization occurs in one dimen-
sion, a sharp increase in the width of the exponentially
localized momentum distributions is predicted in two
dimensions, and a transition to a delocalized state is
predicted in three dimensions [25].

Early efforts to observe these effects in sodium
were hampered by the presence of a boundary in
momentum space that arises from the nonzero pulse
duration of the interaction Hamiltonian [19]. To over-
come this problem, we have constructed a new ex-
periment with laser-cooled cesium atoms. The larger
atomic mass and the longer wavelength of the atomic
transition push out the boundary to much higher
momenta.

This paper describes our new cesium experiment,
which is a realization of the quantum kicked rotor,
and presents a detailed study of boundary effects on
dynamical localization. In Section 2 we give a theo-
retical background on atomic motion in a far-detuned
dipole potential, and provide a classical analysis of
the boundary in phase space. In Section 3 we describe
the general experimental approach. In Section 4 we
discuss the new experimental results with cesium. Fi-
nally, in Section 5 we describe some directions for fu-
ture work including a new method of quantum state
preparation based on stimulated Raman transitions.
This method will prepare an initial condition that is
a minimum uncertainty state in phase space, opening
the way for detailed studies of quantum transport in
mixed phase space.

Fig. 1. Classical calculation of the effective stochasticity parameter
Keff as a function of momentum for square pulses of various
temporal widths. The horizontal line represents theδ-kick case.
The other curves represent square pulses with widthsα = 0.014
(heavy solid line),α = 0.024 (dashed),α = 0.049 (dash–dot), and
α = 0.099 (dotted). The well depth is adjusted in each case to give
the same maximum value ofKeff = 10.5 atp/2~kL = 0. The point
whereKeff drops to∼ 1 in each case is the classical momentum
boundary. The typical limit of our momentum measurements is
|p/2~kL | ≈ 80. Note that we have suppressed the curves after
their first zero-crossing.

2. Theoretical background

To describe our system we begin with a two-
level atom with transition frequencyω0 interacting
with a pulsed standing wave of linearly polarized,
near-resonant light of frequencyωL. For sufficiently
large detuningδL = ω0 − ωL (relative to the nat-
ural linewidth), the excited state amplitude can be
adiabatically eliminated [16]. The atom can then be
treated as a point particle. This approximation leads
to the following kicked-rotor Hamiltonian for the
center-of-mass motion of the atom

H = p2/2M + V0 cos(2kLx)

∞∑

n=−∞
F(t − nT ). (1)

HereV0 = ~Ω2/8δL, kL is the wave number of the
light, Ω = 2µE0/~ the resonant Rabi frequency,µ

the atomic dipole moment,E0 the electric field of
a single traveling wave component of the standing
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Fig. 2. Classical phase portraits for the kicked rotor withK = 10.5, comparingδ-kicks (a) to square pulses of widthsα = 0.014 (b) and
α = 0.049 (c). Case (b) is typical for our localization experiments. This case mimics theδ-kicked rotor for a momentum region much
larger than that used in our experiments (|p/2~kL | . 80).

wave,F(t) a pulse centered att = 0 with duration
tp, andT is the period of the standing wave pulses.
It is convenient to rescale our coordinates and use the
dimensionless Hamiltonian

H = ρ2/2 + k cos(φ)

∞∑

n=−∞
f (τ − n), (2)

whereφ = 2kLx, ρ = (2kLT/M)p, τ = t/T , f (τ)

is a pulse of unit amplitude and scaled durationα =
tp/T , k = (8V0/~)ωrT

2 is the scaled kick ampli-
tude, ωr = ~k2

L/2M is the recoil frequency,H ′ =
(4k2

LT 2/M)H , and we have dropped the prime onH .
In the quantized model,φ andρ are conjugate vari-
ables that satisfy the commutation relation [φ, ρ] =
i–k, where–k = 8ωrT is a scaled Planck constant. In the
limit where f (τ) becomes aδ-function, the product
ηk reduces to the classical stochasticity parameterK

for the δ-kicked rotor, whereη = ∫ ∞
−∞f (τ)dτ . The

stochasticity parameter completely specifies the clas-
sical δ-kicked rotor dynamics. ForK & 1 the clas-

sical δ-kicked rotor dynamics are globally chaotic, in
the sense that there are no invariant tori that prevent
trajectories in the main chaotic region from attaining
arbitrarily large momenta. ForK > 4 the primary res-
onances become unstable, and the phase space is pre-
dominantly chaotic.

The effects of a nonzero pulse width can be seen by
rewriting the sequence of kicks as a discrete Fourier
series and analyzing the amplitudes of the primary
resonances of the system. Applying this procedure to
the Hamiltonian (2)

H = ρ2/2 + k

∞∑

m=−∞
f̃ (2πm) cos(φ − 2πmτ), (3)

wheref̃ (2πm) is the Fourier transform of the pulse
function f (τ). This Hamiltonian has primary reso-
nances located atρ = dφ/dt = 2πm. Therefore, the
Fourier transform evaluated atm = ρ/2π modifies the
effective stochasticity parameterKeff as a function of
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momentum. For a square pulse, which approximates
the pulse used in our experiments, this factor can be
written as

Keff = αk
sin(αρ/2)

αρ/2
, (4)

where Keff(ρ = 0) = αk plays the role of theδ-
kicked rotor stochasticity parameterK. This depen-
dence ofKeff on momentum is displayed in Fig. 1,
which compares several square-pulse cases to theδ-
kick case. The dynamics of the system undergo a tran-
sition asKeff drops to∼ 1, because of the presence of
KAM surfaces that span the phase space and act as a
barrier against momentum diffusion. Thismomentum
boundaryis illustrated in Fig. 2, which shows classical
phase portraits for theδ-kicked rotor (Fig. 2(a)) and
two square-pulse cases (Figs. 2(b) and (c)). The phase
portrait of Fig. 2(b) is typical of our current cesium
experiment, and the boundaries are well outside the
range of detectable atomic momenta,|p/2~kL | . 80.
Our previous experimental work in sodium was lim-
ited to a bounded chaotic region similar to that in Fig.
2(c). While this situation enabled the observation of
the transition from the short time classical diffusion
to the exponential localization of the momentum dis-
tribution after the quantum break time, it could not be
used to explore any continued momentum growth due
to delocalization beyond that point.

Fig. 3 shows classical Monte-Carlo simulations
(with 2 × 105 particles) of the same systems as in
Fig. 2. The momentum distributions after 68 kicks
are plotted here. The distributions are similar in the
central region, but the boundary suppresses diffusion
in the wings of the distributions in the square-pulse
cases, especially in the case with the widest pulses
(α = 0.049). The nearly Gaussian initial momentum
distribution is also plotted, and it corresponds to the
initial distribution in the experiments.

A simple classical model of the boundary provides
us with relevant scaling parameters and makes clear
the advantage of using cesium rather than sodium.
Consider an atom with a momentum such that it travels
one period of the standing wave during a kick. Then
the momentum transferred to the atom by the potential
averages to zero, and the particle no longer diffuses.

Fig. 3. Comparison of momentum distributions from classical sim-
ulations for different pulse widths after 68 kicks, withK = 10.5.
The nearly Gaussian initial condition is shown as a dotted line.
Notice that even forα = 0.014 (dashed), the classical growth is
slowed. Forα = 0.049 (light solid) the initial condition is unaf-
fected outside the boundary. The heavy line is a classical simula-
tion for the δ-kicked rotor. The vertical scale is logarithmic and
in arbitrary units.

This situation occurs whenvtp = 1
2λ, and hence an

estimate for the boundary location is

p/2~kL = Mλ2/8π~tp. (5)

Notice that this expression corresponds to the first
zero-crossing of (4). The larger mass and longer op-
tical wavelength of cesium provide a 12-fold increase
over sodium in the momentum boundary location for
a given pulse width.

3. Experiment

The experimental setup (Fig. 4) is similar to that of
our earlier sodium-based quantum chaos experiments
[19]. The experiments are performed on laser-cooled
cesium atoms in a magneto-optic trap (MOT) [26,27].

The atoms are trapped in a stainless steel UHV
chamber, in contrast to the earlier experiments in our
group that used a quartz interaction chamber. All op-
tical viewports are anti-reflection coated on both sides



82 B.G. Klappauf et al. / Physica D 131 (1999) 78–89

Fig. 4. Schematic diagram of the experimental setup. Two diode lasers provide the light for the MOT, and a Ti : sapphire laser provides
the far-detuned standing wave.

to reduce intensity fringes on the laser beams. An am-
pule containing cesium metal is attached to the cham-
ber through a valve that is opened occasionally to leak
cesium vapor into the chamber. The valve is necessary
because of the rather high room temperature vapor
pressure of cesium. A pair of anti-Helmholtz coils sur-
rounding the chamber provides a magnetic field gra-
dient of 11 G/cm for the MOT. When the current to
the anti-Helmholtz coils is switched off, the magnetic
fields decay exponentially after a brief transient, with
a 1/e time of about 3 ms. This decay time is longer
than in the earlier sodium-based experiments because
of induced currents in the metal chamber.

Two single-mode diode lasers (L1, L2) at 852 nm
provide the light for cooling, trapping, and detection
of the cesium atoms. L1 is a 100 mW distributed Bragg
reflector (DBR) diode laser locked via frequency-
modulation (FM) saturated-absorption spectroscopy
to the(6S1/2, F = 4) → (6P3/2, F

′ = 4, 5) crossover
resonance. The main beam from L1 is double-passed
through a tunable acousto-optic modulator (AOM1)
centered at 80 MHz that provides fast control over
the intensity and detuning of the beam. During the
trapping stage of the experiment, the light from L1
is tuned 15 MHz to the red of the(6S1/2, F = 4) →
(6P3/2, F

′ = 5) cycling transition. The light from
L1 passes through a spatial filter (SF), is collimated
with a waist of 1.4 cm, and has a typical power of

23 mW at the chamber. The beam is divided into three
beams of equal intensity by two beamsplitters with
transmissions of 66% and 50%. The three beams are
retroreflected through the center of the chamber in a
standard six-beam MOT configuration.

The repump laser, L2, is a 150 mW Littrow cavity
grating-stabilized diode laser. This beam is used to
prevent optical pumping into theF = 3 ground state
during the trapping and detection stages. This laser is
electronically locked to the center of the(6S1/2, F =
3) → (6P3/2, F

′ = 4) saturated-absorption reso-
nance. The beam has a typical power of 27 mW at
the chamber and a waist of 7.5 mm. The intensity
is controlled by a mechanical shutter (SH) with a
rise/fall time of 1 ms. The beam is combined with the
vertical arm of the light from L1 via a polarizing cube
beamsplitter and retro-reflected through the chamber.
Optical isolators (ISO1, ISO2) are used to minimize
optical feedback to L1 and L2.

The entire experimental timing and data acquisition
sequences are computer controlled. The timing dia-
gram for the experiment is given in Fig. 5. After trap-
ping and initial cooling, the intensity of L1 is reduced
for 1 ms and the detuning is increased to 39 MHz to
further cool the sample. Typically, we trap 106 atoms
from the background vapor. The momentum distri-
bution of the atoms is nearly Gaussian, although the
tails of the distribution are more populated than in a
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Fig. 5. An idealized timing diagram for the experiment.

purely Gaussian distribution. The center of the dis-
tribution typically fits well to a Gaussian distribution
with σp/2~kL = 4.4, and 96% of the atoms are con-
tained in this Gaussian. The position distribution of
the atoms is also Gaussian, withσx = 0.1 mm.

After the final cooling, the trapping fields are turned
off, leaving the momentum distribution unchanged,
and the interaction potential pulses are then turned
on. A stabilized single-mode Ti : sapphire laser (L3)
pumped by an argon-ion laser provides the pulsed
standing wave. The light from L3 passes through
a fixed-frequency 80 MHz acousto-optic modulator
(AOM2) that controls the pulse sequence. The beam
is spatially filtered, centered on the atoms, and retro-
reflected through the chamber to form a standing
wave. The beam has a typical power of 290 mW
at the chamber and a waist of 1.44 mm. The abso-
lute wavelength of L3 is measured with a scanning
Michelson interferometer wavemeter. A scanning con-
focal Fabry–Perot cavity with a 1.5 GHz free spectral
range is used to monitor long-term drift of L3 during
measurements.

For all the experiments described here we detuned
this beam 6.1 GHz to the red of the cycling transi-
tion, with typical fluctuations of about 100 MHz. The

pulse sequence consisted of a series of fixed-length
pulses with a rise/fall time of 75 ns and less than 3 ns
variation in the pulse duration. Sequences using pulse
widths between 283 and 1975 ns (full width at half
maximum) were used in these experiments to demon-
strate the role of the momentum boundary. The period
was 20µs with less than 4 ns variation per pulse pe-
riod as measured with a fast photodiode. The proba-
bility of spontaneous scattering was less than 0.5% per
kick period for all of the parameters used. The phase
noise of the standing wave due to vibrations in the
optical system resulted in less than 8% of a standing
wave period phase drift after 200 kicks, with a typical
fluctuation timescale of 0.5 ms.

The detection of momentum is accomplished by
a time-of-flight method. The atoms drift in the dark
for a controlled duration, typically 15 ms. The trap-
ping beams are then turned on in zero magnetic field,
forming an optical molasses [26] that freezes the po-
sition of the atoms. The final spatial distribution is
recorded via fluorescence imaging in a short (10 ms)
exposure on a cooled charge-coupled device (CCD)
camera. The final distribution and the free-drift time
enable the determination of the momentum distribu-
tion. The maximum momentum that we can measure is
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Fig. 6. Time evolution of a typical kicked-rotor experiment forK = 11.5 ± 10%, T = 20µs, 0.283µs pulse width, and–k = 2.08. The
initial distribution is nearly Gaussian withσp/2~kL = 4.4. The final distribution is exponential with a localization length of 13. Note that
the vertical axis is linear and in arbitrary units, and the time increment between distributions is 2 kicks.

limited by the size of the CCD. For a 15 ms drift time,
we can detect momenta within|p/2~kL | ≈ 80. Using
shorter drift times, we could measure larger momenta
at the expense of resolution. The initial spatial distri-
bution is not deconvolved from the final momentum
distributions, because the effect on the RMS width of
our final distributions is on the order of 1%.

The pulse period wasT = 20µs, corresponding
to –k = 2.08. The kick strengthk was chosen to pro-
vide the best exponentially localized momentum dis-
tributions. For the shortest pulses, we usedV0/h =
3.55 MHz, yielding a classical stochasticity parameter
of K = 13.1. For the longest pulses we usedV0/h =
0.94 MHz, corresponding toK = 24. The absolute
uncertainty inK is ±10%, and the largest contribu-
tions are due to the measurement of beam profile and
the absolute laser power calibration.

The momentum boundary due to the nonzero pulse
width is |p/2~kL | = 213 for our typical operating
parameters. This value is a factor of four larger than
in our earlier sodium experiments. The corresponding
reduction in the effective value ofK is only 6% out to
|p/2~kL | = 40 and 25% at our maximum detectable
momentum of|p/2~kL | ≈ 80.

We can also estimate the effects of collisions
from the experimental work of Dalibard and cowork-

ers [28], who measured a collision cross-section of
5 × 10−11 cm2 for cesium atoms prepared in the
F = 4, mF = 4 ground sublevel with a tempera-
ture of 5µK. In our initial distribution, the density
is about 1011 cm−3, and the mean velocity is 5 cm/s.
These figures lead to a collision probability of only
2.5% in 1 ms, or 0.05% per kick period. This result
actually overestimates the collision probability be-
cause our atoms are distributed among the variousmF

sublevels, and so the actual collision cross-section is
smaller than the figure used here.

4. Data and results

The results presented here illustrate the capabilities
of the cesium setup. We observe dynamical localiza-
tion and study experimentally the effects of nonzero
pulse width on the kicked-rotor system. The resulting
momentum distributions are compared with classical
simulations. We will present a detailed study of the de-
pendence of quantum localization on the stochasticity
parameterK in a future publication.

Fig. 6 shows the time evolution for a typical
kicked-rotor experiment, from the initial distribution
through 68 kicks. The momentum distribution starts
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Fig. 7. Comparison of momentum distribution evolution for four different kick pulse widths from 0.3 to 2µs. Distributions for five different
times are shown on each graph: 0 kicks (heavy solid line), 17 kicks (dotted), 34 kicks (dashed), 51 kicks (dash–dot), and 62 kicks (solid).
These data show the effect of the boundary on the evolution of the momentum distribution. The vertical scales are logarithmic and in
arbitrary units.
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Fig. 8. Comparison of experimental momentum distributions after
51 kicks for two different pulse widths,α = 0.014 (heavy line)
and α = 0.049 (thin line). In theα = 0.014 case, also shown in
Fig. 7(a), the boundary is at|p/2~kL | = 213. This boundary width
is much larger than the width of the distribution, and hence the
boundary does not significantly affect the exponential distribution.
In the α = 0.049 case, also shown in Fig. 7(c), the boundary is
located at|p/2~kL | = 61. This boundary width is clearly inside
the base of the exponential distribution; the momentum distribution
is now distorted in its wings, while the shape at the center is
nearly identical to the first case. Note that the vertical scale is
logarithmic and in arbitrary units.

out with a Gaussian profile, which makes a rapid
transition to a broader, exponential distribution. We
observe a continued slow growth in the momentum
distribution until the end of the experiment, with the
distributions remaining exponential. Fig. 7(a) shows
five momentum distributions for an experiment with
similar parameters, taken at increments of 17 kicks.
Note that the distribution remains exponential over
the nearly three orders of magnitude in intensity that
are resolvable in our experiment. The slow growth
of the localized distribution is also evident in this
figure.

Fig. 7 compares experiments using four differ-
ent pulse widths with the corresponding momentum
boundaries as predicted by Eq. (5). In the first case,
Fig. 7(a), the boundary of|p/2~kL | = 213 is three
times larger than the|p/2~kL | = 70 resolvable width
of our distribution. This situation is ideal for exper-

Fig. 9. Growth of energy with time for the cases in Fig. 8. The
momentum boundaries are|p/2~kL | = 213 for the caseα = 0.014
(circles) and|p/2~kL | = 61 for the caseα = 0.049 (triangles).
Note that the initial growth rate is the same until the distributions
diffuse out to larger momenta whereKeff begins to drop sharply.

imental studies of the quantum kicked rotor, since
the momentum distribution remains well within the
boundary. In Fig. 7(b), we see that although the dis-
tance between the boundaries at|p/2~kL | = 125 is
less than twice the width of the final distribution, there
is little effect on the shapes of the distributions. In
Fig. 7(c), the boundary is located at|p/2~kL | = 61,
and it has a clear effect on the wings of the distribu-
tions. Notice, however, that after 17 kicks the distri-
bution still looks exponential. Fig. 7(d) shows a case
where the boundary at|p/2~kL | = 30 is well within
the exponential distributions shown in Fig. 7(a). In
this case, the distribution quickly reaches the bound-
ary, and the diffusion process halts before quantum
localization sets in. It is also interesting to note that
the portions of the initial distributions that are outside
the boundary in Figs. 7(c) and (d) remain stationary.
This behavior is a result of the presence of the invari-
ant curves past the boundary, as shown in Fig. 2, that
strongly inhibit momentum transport. These observa-
tions are consistent with a previous theoretical study
of the kicked rotor with finite pulses [29].

The dynamics near the center of the distribution ap-
pear to be relatively insensitive to the location of the
boundary. Fig. 8 compares the distributions after 51
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Fig. 10. Comparison of experimental momentum distributions after
68 kicks to the classical simulations of Fig. 3. Both square-pulse
cases, the experiment (light solid line) and the simulation (dashed
line), have the same pulse widthα = 0.049 and hence the same
boundary, althoughK is slightly different between the two cases
(K = 11.1 and 10.5, respectively). The experimental data clearly
manifests its quantum nature through a characteristic exponential
profile in the central region. The classical square-pulse simulation
instead matches the classicalδ-kicked rotor simulation (heavy solid
line) in the central region. The initial distribution (dotted line)
remains unchanged outside the boundary. Note that the vertical
scale is logarithmic and in arbitrary units.

kicks from Figs. 7(a) and (c). It is clear that the por-
tion of the distribution in the central region remains
unaffected by the boundary, but there is substantial de-
viation between the two cases in the wings of the dis-
tributions. Fig. 9 shows that the initial energy growth
rate is the same for the two boundary locations in Fig.
8. It is only as the distribution nears the boundary that
further growth is inhibited. This point is significant be-
cause much of the theoretical analysis of this system
has been done using the long-term diffusion in energy,
which is especially sensitive to the high-momentum
tails of the distribution.

In Fig. 10 we compare the intermediate case of Fig.
7(c) (α = 0.049) to the classical simulation shown in
Fig. 3. The distributions shown correspond to 68 kicks.
There are several important features in this compari-

son. First, the classical square-pulse case follows theδ-
kick case out to the boundary. Second, the experimen-
tal distribution is characteristically exponential near
its center, and then it drops off at the boundary as in
the classical simulation. Finally, the initial conditions
in both the classical simulation and the experiment re-
main unchanged outside the boundary. Therefore, in
the central region, both the classical simulation and
the experiment behave as they would in the limit ofδ-
kicks, displaying classical diffusion and quantum lo-
calization, respectively. Their behavior in the bound-
ary region, however, is quite similar.

5. Future directions

So far, we have considered the observation of dy-
namical localization and the role of the boundary in
our experiment. We will now discuss experiments that
are currently under development in our laboratory that
extend these results. Specifically, we will consider two
classes of experiments: noise and dissipation in the
quantum kicked rotor and the probing of local phase
space structure using localized initial states.

The study of noise and dissipation is of great impor-
tance in many areas of physics. In particular, the role
of noise and dissipation in quantum mechanics has
generated much theoretical interest in recent years, es-
pecially in the context of classically chaotic systems.
In the case of the quantum kicked rotor, noise and dis-
sipation are expected to lead to destruction of quan-
tum localization. Thisdelocalizationphenomenon is
the prototype for demonstrating the important role of
noise in recovering the (chaotic) classical limit from
its quantum description [22–24,30]. The kicked rotor
is also an interesting setting for the study of noise and
dissipation, because of its fundamental importance in
quantum chaos.

The noise-induced delocalization experiments are
relatively straightforward generalizations of the dy-
namical localization experiments. To introduce noise
in the experiment, one simply adds a random, time-
dependent perturbation to one of the system parame-
ters. Suitable parameters include the kick strength, the
time between kicks, or the phase of the standing-wave
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potential. Alternatively, one may introduce dissipation
by coupling the atoms to a heat reservoir; this cou-
pling can be accomplished by allowing the atoms to
undergo spontaneous emission events, by either tun-
ing the standing-wave light close to resonance or in-
troducing weak, near-resonant light from the trapping
beams. The predicted behavior of the quantum kicked
rotor in the presence of noise [8,22,24] is that instead
of localizing after the quantum break time, the mo-
mentum distribution will continue to diffuse at a re-
duced rateDq, where the magnitude ofDq increases
with the noise amplitude. Delocalization due to am-
plitude noise was seen in the previous sodium-based
experiments, but the momentum boundary prevented
a quantitative study of the effect [31].

We will also implement a method for preparing lo-
calized initial conditions, so that we can study lo-
cal structures in the classical phase space. Our cur-
rent initial conditions are completely delocalized in
position over the scale of one period of the standing
wave. These initial conditions are a serious limita-
tion for studies of mixed phase space, because the re-
sulting dynamics are an average over many structures
contained within the initial distribution. If we were
able to produce initial states that were narrow in both
position and momentum, we could study many inter-
esting effects, including local fluctuations in the lo-
calization length, phase-space scarring, tunneling be-
tween islands of stability, and transport across KAM
tori.

In order to prepare localized initial states, we must
first prepare a distribution that is further localized in
momentum. We will accomplish this task via a stimu-
lated Raman “tagging” approach [32]. This approach
takes advantage of the fact that the cesiumD2 line
has a ground state that is split into two hyperfine lev-
els,F = 3 andF = 4, separated by∼ 9.2 GHz. It is
possible to induce two-photon stimulated Raman tran-
sitions between the two ground levels by illuminating
the atoms with two laser fields that are each detuned
several GHz from theD2 line, but have a relative fre-
quency offset that is near the ground state splitting.
Because the fields are far-detuned, this process is co-
herent. If the two fields are counterpropagating, the
interaction will be sensitive to Doppler shifts, and the

resonance condition is

ν2 − ν1 = 9.2 GHz− v

c
(ν1 + ν2), (6)

whereν1 andν2 are the frequencies of the two fields,v

the velocity of the atom, andc is the speed of light. The
experimental sequence begins by cooling and trapping
atoms in the MOT. The repump light is then turned off,
and the atoms are optically pumped into theF = 3
ground level. Then the trapping beams are turned off,
and the stimulated Raman fields are pulsed on. The
relative detunings of the Raman beams are chosen so
that the atoms promoted to theF = 4 ground state are
nearp = 0 after the Raman pulse. The width of the
momentum distribution of these “tagged” atoms is set
mainly by the duration of the pulse. Once the coldest
atoms have been tagged, the experiment can proceed
as usual. At the end of the experiment, we turn on the
freezing molasses without the repump light in order
to illuminate and image only those atoms that were
tagged. The untagged atoms effectively drop out of the
experiment, leaving behind a smaller atomic sample
with a narrower initial momentum distribution.

We now consider localization in position. We first
prepare the atoms using the stimulated Raman tech-
nique such that the momentum distribution is within
the interval(−~kL , +~kL). The standing-wave poten-
tial is then turned on adiabatically. Under these condi-
tions, all the atoms are loaded into the lowest energy
band of the periodic potential [33]. As the depth of
the potential is increased, the atoms become localized
near the bottoms of the potential wells, at the expense
of increased temperature. In the limit of deep poten-
tial wells, the lowest energy band approximates the
ground state of the harmonic oscillator, since the well
bottoms are locally parabolic; hence, in this limit, the
prepared states are in principle minimum uncertainty
Gaussian wave packets, modulo 2π in position. The
aspect ratio of the distribution in phase space can be
controlled via the final well depth.

The prepared initial distribution that we have de-
scribed so far is localized aboutx = p = 0. It
is useful to have techniques for centering the distri-
bution at other points of interest in phase space. A
shift in the position of the distribution can be accom-
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plished by suddenly shifting the phase of the standing
wave at the beginning of the experiment. Such a phase
shift can, for example, be accomplished by placing an
electro-optic modulator in the path of one of the two
beams that form the standing-wave potential. A shift
in the momentum of the distribution can be achieved
by introducing a relative frequency shift between the
two standing-wave beams, producing a standing wave
moving at a velocity proportional to the shift.

6. Summary

We have constructed a quantum chaos experiment in
cesium that models theδ-kicked rotor. This apparatus
is capable of a much wider range of experiments than
the sodium-based experiments. The primary advantage
of this new experiment lies in the physical character-
istics of cesium, which reduce the effects of the mo-
mentum boundary and bring the experiment closer to
the δ-kick limit. We will soon extend the capabilities
of this experiment to study the effects of noise and
decoherence on localization and to study structures in
mixed phase space.
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