
VOLUME 81, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 9 NOVEMBER 1998

4

Experimental Study of Quantum Dynamics in a Regime of Classical Anomalous Diffusion
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We measure the momentum of cold cesium atoms in a periodically pulsed standing wave of light.
This system is an experimental realization of the quantum kicked rotor. The momentum diffusion in
the (chaotic) classical analog of this system is typically suppressed by quantum localization. We find,
however, that for certain pulse amplitudes where the classical system exhibits anomalous diffusion,
our momentum distributions are not exponentially localized. We observe a predicted correspondence
between the classical and quantum energy growth as a function of pulse amplitude and period.
[S0031-9007(98)07597-8]
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The correspondence between a quantum system and
underlying classical dynamics is a topic of fundamental im
portance. The paradigm system for the study of this cor
spondence is the kicked rotor, because of the simplicity
its equations of motion and the wealth of knowledge ava
able on the classical system. One particularly interesti
aspect of the kicked rotor is the existence ofaccelerator
modes,which lead to Lévy flights in generic phase-spac
trajectories [1,2]. These Lévy flights can have a strong i
fluence on the global transport properties of a system, a
have been recently employed in the understanding of a s
recoil laser cooling scheme for atoms [3] and the motio
of particles in a nonuniform fluid flow [4]. In the classica
kicked rotor, the effects of the accelerator modes beco
most important in the long-time limit, because they accou
for a relatively small area in phase space. However, rec
theoretical work has shown that these structures can h
a dramatic effect in the quantum case, because of the n
local nature of the wave functions [5].

In this Letter, we study an experimental realization o
the quantum kicked rotor, where cold cesium atoms a
“kicked” by a periodically pulsed standing wave of far
detuned light. Previous work with sodium atoms ha
established this system as an excellent setting for
study of quantum chaos [6,7]. In this previous work, w
observeddynamical localization,which is the quantum
suppression of the classical chaotic momentum diffusio
the hallmark of this effect is a localized momentum
distribution with an exponential profile. Here, we repo
the experimental study of the atomic momenta as
function of the pulse amplitude and period. We obser
the oscillations in the momentum distribution widths tha
are expected from theory. We also observe that for cert
kick amplitudes where accelerator modes are present
the classical phase space, the momentum distributions
not have the expected exponential form over the tim
scale of our experiment [8]. These results, which form th
main focus of this Letter, suggest a correlation betwe
classical anomalous diffusion and the observed quant
dynamics.
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To describe our system, we begin with a two-level atom
with transition frequencyv0 interacting with a pulsed
standing wave of near-resonant light of frequencyvL.
For sufficiently large detuningdL ­ v0 2 vL (relative
to the natural linewidth), the excited state amplitude ca
be adiabatically eliminated [9]. The atom can then b
treated as a point particle. In this approximation, th
center-of-mass motion of the atom is described by th
Hamiltonian

H ­
p2

2M
1 V0 coss2kLxd

NX
n­1

Fst 2 nT d . (1)

Here V0 ­ h̄V2y8dL, kL is the wave number,T is the
pulse period,V is the resonant Rabi frequency, andFstd
is a square pulse centered att ­ 0 with durationtp. We
can rewrite (1) as a scaled, dimensionless Hamiltonian

H 0 ­
r2

2
2 k cossfd

NX
n­1

fst 2 nd , (2)

wheref ­ 2kLx, r ­ s2kLTyMdp, t ­ tyT , fstd is a
pulse of unit amplitude and scaled durationa ­ tpyT ,
k ­ s8V0yh̄dvrT2 is the scaled kick amplitude,vr ­
h̄k2

Ly2M is the recoil frequency, andH 0 ­ s4k2
LT 2yMdH.

In the quantized model,f andr are conjugate variables
satisfying the commutation relationff, rg ­ ik2 , where
k2 ­ 8vrT is a scaled Planck constant.

In the limit of arbitrarily short pulses, this system is
equivalent to thed-kicked rotor. The stochasticity pa-
rameter K completely specifies the classicald-kicked
rotor dynamics. ForK * 1, the classical dynamics are
globally chaotic. ForK . 4, the primary resonances
become unstable, and the phase space is predomina
chaotic. In our system, the effective stochasticity param
ter at zero momentum is given by the square-puls
expressionK ­ ak. The nonzero pulse widths lead to
a reduction ofK with increasing momentum.

In these experiments we study the evolution of th
momentum distributions as a function of the two sys
tem parametersK and k2 . Although the classical phase
© 1998 The American Physical Society
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space is predominantly chaotic forK . 4, there are many
small stable structures that influence the system dyna
ics, even for arbitrarily largeK. In particular, whenK
is near 2pj, where j is a positive integer, there exist
stable accelerator modes that result from the period
ity of the phase space in momentum [10]. A trajector
inside one of these accelerator modes changes its m
mentum byjDrj ­ 2pj at each kick. (Note that other
smaller accelerator modes exist for other values ofK.)
Additionally, trajectories that begin outside the acceler
tor modes will eventually wander near them and “stick
to their boundary for a possibly large but finite numbe
of kicks [1]. This sticking results in the Lévy-flight tra-
jectories mentioned above, where random-walk behav
is interspersed with strings of many correlated steps
the same direction. Thus, the accelerator modes chan
the global nature of phase-space transport from diffusio
characterized by random-walk trajectories, to anomalo
diffusion, characterized by Lévy-flight trajectories. Th
diffusive behavior is described by a linear growth in
energy,E ; kspy2h̄kLd2y2l ­ Dt, whereD is the diffu-
sion coefficient, whereas anomalous diffusion has a mo
fied dependenceE ­ Dtm, where m fi 1. A classical
calculation of the diffusion coefficient shows an oscilla
tory dependence onK [10,11],

DsKd ­
K2

2

"
1
2

2 J2sKd 1 J2
2 sKd 1 OsK23y2d

#
,

(3)

whereJ2sKd is an ordinary Bessel function. This func-
tion, which is valid both in the absence of accelerato
modes and for short times in the presence of accelera
modes, is plotted in Fig. 2. The maxima of this func
tion coincide with the locations of the stable accelera
tor modes. Finally, we note that because of the fini
nature of the pulses used in our experiment, the pha
space is not exactly periodic in momentum, and hence o
system does not have true accelerator modes. Howev
our system has “quasiaccelerator modes” [10], which b
have like accelerator modes over a bounded region
phase space.

The quantum mechanical case, which applies to o
experiment, exhibits behavior that is quite different from
the classical case. In contrast to the long-time diffusio
or superdiffusion of the classical case, the quantu
system diffuses for only a short time and then stop
when the momentum distribution reaches a characteris
exponential form [7]. Shepelyansky has predicted th
the initial quantum diffusion rateD0, and hence the
characteristic lengthl of the localized distributions (the
“localization length”), follows the classical case whenK
is replaced byKq, with [12,13]

Kq ­ K

µ
2
k2

∂
sin

µ
k2

2

∂
. (4)
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In this caseD0sKd ­ DsKqdyk2 2 and l ­ 2bD0, where
b has been determined to be,1y2 via numerical simula-
tions [12]. Notice that the zero crossings of (4) for intege
k2 y2p correspond toquantum resonances,where a plane
wave atp ­ 0 undergoes ballistic growth in momentum
and exponential localization does not occur [7].

The quantum dynamics of the kicked rotor in the pres
ence of accelerator modes has been studied theoretic
by Hanson, Ott, and Antonsen [14]. In this work, the au
thors observed that any population contained within a
accelerator mode would decay exponentially due to tu
neling, and they developed a model for global momentu
transport in the presence of accelerator modes. Howev
their simulations used small values ofk2 , typically an
order of magnitude smaller than those used in our e
periment. A more recent theoretical investigation b
Sundaram and Zaslavsky [5] focused on values ofk2 com-
parable to those used in our experiment as well as sma
values. In this work, the authors found evidence that a
celerator modes enhance fluctuations in the localizati
length of the quasienergy states.

With these ideas in mind we have performed an expe
mental study of the quantum kicked rotor using cesiu
atoms. The experimental setup is similar to that of ou
earlier experiments on noise and dissipation in the qua
tum kicked rotor [15]. The experiments are performe
on laser-cooled cesium atoms in a magneto-optic tr
(MOT). Two actively locked single-mode diode laser
at 852 nm are used for cooling, trapping, and detectio
of the cesium atoms. Typically, we trap106 atoms with
sx ­ 0.1 mm and spy2h̄kL ­ 4. The trapping fields
are then turned off, and the interaction potential is turne
on. The pulsed standing wave is provided by a stab
lized single-mode Ti:sapphire laser pumped by an argo
ion laser. This light passes through an acousto-op
modulator that controls the pulse sequence. The bea
is aligned with the atoms and retroreflected through th
chamber to form a standing wave. The beam has a ty
cal power of 290 mW at the chamber and a waist o
1.44 mm. We detuned this beam 6.1 GHz to the red of th
s6S1y2, F ­ 4d ! s6P3y2, F ­ 5d cycling transition, with
typical fluctuations of about 100 MHz. The pulse se
quence consists of a series of 283 ns (full width at ha
maximum) pulses with a rise and/or fall time of 75 n
and less than 3 ns variation in the pulse duration. Th
pulse periods for the experiments presented here were v
ied from T ­ 10 to 60 ms, corresponding to the range
k2 , 1 to 2p, with less than 4 ns variation per pulse pe
riod. The detection of momentum is accomplished by le
ting the atoms drift in the dark for a controlled duration
(typically 15 ms). The trapping beams are then turned o
in zero magnetic field, forming an optical molasses th
freezes the position of the atoms [6]. The atomic positio
is recorded via fluorescence imaging in a short (10 m
exposure on a cooled charge-coupled device (CCD). T
final spatial distribution and the free-drift time enable th
4045
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determination of the momentum distribution in the dire
tion of the standing wave.

There are several systematic uncertainties in the exp
ment, which we now summarize. There are two system
uncertainties in the determination of the momentum dis
butions. The first is the spatial calibration of the imagi
system. The second arises from the ambiguity in the d
time due to motion occurring during different interactio
times. These two factors give an overall systematic
certainty of64% in the momentum measurements. T
uncertainty in the stochasticity parameterK is 610%, with
the largest contributions due to the measurement of la
beam profile and absolute power. The reduction in the
fective value ofK due to the nonzero temporal width of th
pulses is only6% out to jpy2h̄kLj ­ 40, and the effective
value drops off by25% at our maximum detectable mo
mentum ofjpy2h̄kLj ø 80. Additionally, the measured
distribution energies are affected by many factors beca
of their sensitivity to high momenta, and in the worst cas
the absolute values may have systematic errors on the
der of (20–30)%. These worst-case errors correspon
measurements whereKq . 15, since the distribution tails
reach the edge of our detection system. In these cases
quoted energy most likely underestimates the true ene
Finally, we note that our earlier experimental distributio
had an exaggerated sharp bump at their center, beca
fraction of the atoms, which we conservatively estima
to be around 20%, were in theF ­ 3 ground state [15].
These atoms did not interact as strongly with the sta
ing wave, and so they did not diffuse nearly as far as
majority of the atoms in theF ­ 4 ground state. For the
distributions shown in Fig. 1, we have ensured that nea
all the atoms were in theF ­ 4 ground state before the in
teraction with the standing wave by turning off the repum
laser light100 ms after the trapping laser light. For the e
ergy data in Fig. 2, theF ­ 3 ground state is again aroun
20% populated; however, this mixed population leads o
to a systematic reduction in the measured energy (on
order of 20%), and does not affect the locations of the
served peaks.

A typical exponentially localized momentum distribu
tion for Kq ­ 9.1 is shown in Fig. 1(a). This distribution
is what one would expect for dynamical localization. Fi
ure 1(b), which corresponds toKq ­ 7.9, shows a typi-
cal example of the observed distributions that are clea
not exponential. We observe the exponential distributi
near the minima ofDsKqd, while nonexponential distribu
tions like that of Fig. 1(b) occur near the maxima. Als
in the case of Fig. 1(b), it is interesting to note that the m
mentum distribution at short and intermediate times gro
significantly more quickly than in the exponentially loca
izing case of Fig. 1(a). This behavior is especially evid
from the “shoulders” on the distribution in Fig. 1(b) afte
10 kicks, which are absent in the corresponding distri
tion in Fig. 1(a). At this time, we have no simple expl
nation for these distributions.
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FIG. 1. Comparison of the momentum distribution evolutio
with k2 ­ 2.08 for the cases (a)Kq ­ 9.1, (b) Kq ­ 7.9.
Time steps shown are 0 kicks (light solid), 5 kicks (das
dot), 10 kicks (bold), 20 kicks (dashed), 45 kicks (dotted), a
70 kicks (heavy bold). The vertical scale is logarithmic and
arbitrary units.

In order to observe the oscillations of the distributio
widths versusKq, we measured the distribution energie
after 35 kicks as a function ofK for several different values
of k2 . We note that although the theory is given in term
of localization lengthl, the presence of nonexponentia
distributions at the maxima ofDsKqd make meaningful
fits of the localization length questionable. Howeve
the distribution energyE scales asl2, so the energy is
a sensible measure of the momentum distributions
comparison with theory. The results are shown in Fig.
where the energy is plotted againstKq. The classical
diffusion curve from Eq. (3) is also shown for compariso
Because the maxima of the energy curves match for
different k2 cases, this data shows that these classi
oscillations are present in the quantum kicked rotor a
closely match the estimated quantum scaling factor
Eq. (4). The data in Fig. 2 that are “bunched” nearKq ­
0 correspond tok2 ­ 6.24, which is near the quantum
resonance. In this case, as in our earlier work [7], w
observe little growth in these momentum distributions. W
also note that one may expect the energy data to h
an overall growth asK 4

q because, as noted above, th
localization lengthl grows asK 2

q . However, we do not
observe this scaling behavior in our experiment, and
fact our data has a similar overall growth to that ofDsKqd,
which grows asK 2

q . This observed behavior is a resu
of the systematic effects described above, which have
strongest effect on the energies measured at largerKq.
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FIG. 2. Oscillations in the growth of energy as a function ofKq for various values ofk2 . Data show the average energy after 3
kicks for the casesk2 ­ 1.04 (inverted triangles), 1.56 (crossed squares), 2.08 (triangles), 3.12 (open circles), 4.16 (filled squ
28 kicks fork2 ­ 5.20 (filled diamonds); and 24 kicks fork2 ­ 6.24 (filled circles). The solid line is a plot of Eq. (3), the classica
energy diffusion rate, showing the peaks related to anomalous diffusion. The correspondence of energy growth in the q
case to the classical diffusion constant is consistent for all values ofk2 , supporting the validity of the scaling of the quantum kic
strengthKq.
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In conclusion, we have studied quantum transpo
in the quantum kicked rotor. We have observed th
oscillatory dependence of the average energy growth
the kick strength and period. To our knowledge, thi
is the first experimental observation of these period
variations in momentum transport in this system and th
first experimental confirmation of the predicted quantum
scaling ofK. While the dependence of energy growth o
K andk2 is in good qualitative agreement with theoretica
expectations, the observed deviation of the momentu
distributions for certain intervals inK from their expected,
exponentially localized form was both surprising an
interesting. We hope that this work will stimulate bette
theoretical understanding of the momentum distribution
in the quantum kicked rotor.
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