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Experimental Study of Quantum Dynamics in a Regime of Classical Anomalous Diffusion
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We measure the momentum of cold cesium atoms in a periodically pulsed standing wave of light.
This system is an experimental realization of the quantum kicked rotor. The momentum diffusion in
the (chaotic) classical analog of this system is typically suppressed by quantum localization. We find,
however, that for certain pulse amplitudes where the classical system exhibits anomalous diffusion,
our momentum distributions are not exponentially localized. We observe a predicted correspondence
between the classical and quantum energy growth as a function of pulse amplitude and period.
[S0031-9007(98)07597-8]

PACS numbers: 05.45.+b, 03.65.Sq, 05.40.+j, 42.50.Vk

The correspondence between a quantum system and theTo describe our system, we begin with a two-level atom
underlying classical dynamics is a topic of fundamental im-with transition frequencyw, interacting with a pulsed
portance. The paradigm system for the study of this correstanding wave of near-resonant light of frequenay.
spondence is the kicked rotor, because of the simplicity oFor sufficiently large detuning, = wg — wy (relative
its equations of motion and the wealth of knowledge availto the natural linewidth), the excited state amplitude can
able on the classical system. One particularly interestingpe adiabatically eliminated [9]. The atom can then be
aspect of the kicked rotor is the existenceagtelerator treated as a point particle. In this approximation, the
modeswhich lead to Lévy flights in generic phase-spacecenter-of-mass motion of the atom is described by the
trajectories [1,2]. These Lévy flights can have a strong inHamiltonian
fluence on the global transport properties of a system, and ’ N
have been recently employed in the understanding of a sub- H=2" 4 Vi cog2ky x) Z F(t — nT). (1)
recoil laser cooling scheme for atoms [3] and the motion M n=1
of particles in a nonuniform fluid flow [4]. In the classical ) . .
kicked rotor, the effects of the accelerator modes becomléielre Vo = zQ ./85hL’ kL is the Wak\)/_ef number]" is the
most important in the long-time limit, because they accounp''S€ Pero £} is the resonant Ra.' requency, af)

a square pulse centeredrat 0 with durations,. We

for a relatively small area in phase space. However, recer n rewrite (1) as a scaled, dimensionless Hamiltonian
theoretical work has shown that these structures can have ’

a dramatic effect in the quantum case, because of the non- . p? Y
local nature of the wave functions [5]. H = El kcode) D f(r = n), (@)

In this Letter, we study an experimental realization of =l
the quantum kicked rotor, where cold cesium atoms ar&here¢ = 2k x, p = 2k .T/M)p, 7 = t/T, f(7)is a
“kicked” by a periodically pulsed standing wave of far- pulse of unit amplitude and scaled duratian= 1,/T,
detuned light. Previous work with sodium atoms hask = (8Vy/h)w,T? is the scaled kick amplitudep, =
established this system as an excellent setting for theki /2M is the recoil frequency, anl’ = (4k{T2/M)H.
study of quantum chaos [6,7]. In this previous work, weln the quantized modelp and p are conjugate variables
observeddynamical localizationwhich is the quantum satisfying the commutation relatidnp, p] = ik , where
suppression of the classical chaotic momentum diffusion¥ = 8w, T is a scaled Planck constant.
the hallmark of this effect is a localized momentum In the limit of arbitrarily short pulses, this system is
distribution with an exponential profile. Here, we reportequivalent to thed-kicked rotor. The stochasticity pa-
the experimental study of the atomic momenta as aameter K completely specifies the classicalkicked
function of the pulse amplitude and period. We observeaotor dynamics. FoiK = 1, the classical dynamics are
the oscillations in the momentum distribution widths thatglobally chaotic. ForK > 4, the primary resonances
are expected from theory. We also observe that for certaihecome unstable, and the phase space is predominantly
kick amplitudes where accelerator modes are present ichaotic. In our system, the effective stochasticity parame-
the classical phase space, the momentum distributions der at zero momentum is given by the square-pulse
not have the expected exponential form over the timexpressionk = ak. The nonzero pulse widths lead to
scale of our experiment [8]. These results, which form thea reduction ofK with increasing momentum.
main focus of this Letter, suggest a correlation between In these experiments we study the evolution of the
classical anomalous diffusion and the observed quantummomentum distributions as a function of the two sys-
dynamics. tem parameter& and% . Although the classical phase
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space is predominantly chaotic f&r > 4, there are many In this caseDy(K) = D(Kq)/k 2 and! = 28D,, where
small stable structures that influence the system dynanmB has been determined to bel /2 via numerical simula-
ics, even for arbitrarily large&k. In particular, whenkK  tions [12]. Notice that the zero crossings of (4) for integer
is near27j, wherej is a positive integer, there exist k¥ /2 correspond t@uantum resonanceshere a plane
stable accelerator modes that result from the periodicwave atp = 0 undergoes ballistic growth in momentum,
ity of the phase space in momentum [10]. A trajectoryand exponential localization does not occur [7].

inside one of these accelerator modes changes its mo- The quantum dynamics of the kicked rotor in the pres-
mentum by|Ap| = 27j at each kick. (Note that other ence of accelerator modes has been studied theoretically
smaller accelerator modes exist for other valuesKkof by Hanson, Ott, and Antonsen [14]. In this work, the au-
Additionally, trajectories that begin outside the accelerathors observed that any population contained within an
tor modes will eventually wander near them and “stick” accelerator mode would decay exponentially due to tun-
to their boundary for a possibly large but finite numberneling, and they developed a model for global momentum
of kicks [1]. This sticking results in the Lévy-flight tra- transport in the presence of accelerator modes. However,
jectories mentioned above, where random-walk behaviotheir simulations used small values &f, typically an

is interspersed with strings of many correlated steps irder of magnitude smaller than those used in our ex-
the same direction. Thus, the accelerator modes changeriment. A more recent theoretical investigation by
the global nature of phase-space transport from diffusionSundaram and Zaslavsky [5] focused on valuek @om-
characterized by random-walk trajectories, to anomalouparable to those used in our experiment as well as smaller
diffusion, characterized by Lévy-flight trajectories. Thevalues. In this work, the authors found evidence that ac-
diffusive behavior is described by a linear growth incelerator modes enhance fluctuations in the localization
energy,E = ((p/2hky)*/2) = Dt, whereD is the diffu- length of the quasienergy states.

sion coefficient, whereas anomalous diffusion has a modi- With these ideas in mind we have performed an experi-
fied dependence& = Dr*, where u # 1. A classical mental study of the quantum kicked rotor using cesium
calculation of the diffusion coefficient shows an oscilla-atoms. The experimental setup is similar to that of our

tory dependence ok [10,11], earlier experiments on noise and dissipation in the quan-
ol tum kicked rotor [15]. The experiments are performed

DIK) = 2| = — 1K) + JAK) + O(K~?) |, on laser-cooled cesium atoms in a magneto-optic trap
(K) 2 [2 2(K) 2(K) ( ) (MOT). Two actively locked single-mode diode lasers

(3) at 852 nm are used for cooling, trapping, and detection
of the cesium atoms. Typically, we traj9® atoms with
where J,(K) is an ordinary Bessel function. This func- o, = 0.1mm ando,/2kk, = 4. The trapping fields
tion, which is valid both in the absence of acceleratorare then turned off, and the interaction potential is turned
modes and for short times in the presence of accelerat@n. The pulsed standing wave is provided by a stabi-
modes, is plotted in Fig. 2. The maxima of this func-lized single-mode Ti:sapphire laser pumped by an argon-
tion coincide with the locations of the stable acceleraion laser. This light passes through an acousto-optic
tor modes. Finally, we note that because of the finitenodulator that controls the pulse sequence. The beam
nature of the pulses used in our experiment, the phase aligned with the atoms and retroreflected through the
space is not exactly periodic in momentum, and hence outhamber to form a standing wave. The beam has a typi-
system does not have true accelerator modes. Howeveral power of 290 mW at the chamber and a waist of
our system has “quasiaccelerator modes” [10], which bel.44 mm. We detuned this beam 6.1 GHz to the red of the
have like accelerator modes over a bounded region df6Si/, F = 4) — (6P3/, F = 5) cycling transition, with
phase space. typical fluctuations of about 100 MHz. The pulse se-
The guantum mechanical case, which applies to ouguence consists of a series of 283 ns (full width at half
experiment, exhibits behavior that is quite different frommaximum) pulses with a rise and/or fall time of 75 ns
the classical case. In contrast to the long-time diffusiorand less than 3 ns variation in the pulse duration. The
or superdiffusion of the classical case, the quantunpulse periods for the experiments presented here were var-
system diffuses for only a short time and then stopsed from 7" = 10 to 60 us, corresponding to the range
when the momentum distribution reaches a characteristi€¢ ~ 1 to 27, with less than 4 ns variation per pulse pe-
exponential form [7]. Shepelyansky has predicted thatiod. The detection of momentum is accomplished by let-
the initial quantum diffusion rateDy, and hence the ting the atoms drift in the dark for a controlled duration
characteristic lengthi of the localized distributions (the (typically 15 ms). The trapping beams are then turned on
“localization length”), follows the classical case wh&n in zero magnetic field, forming an optical molasses that

is replaced byK,, with [12,13] freezes the position of the atoms [6]. The atomic position
is recorded via fluorescence imaging in a short (10 ms)
K — K(E) sin(k—> (4y  exposure on a cooled charge-coupled device (CCD). The

d ' final spatial distribution and the free-drift time enable the
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determination of the momentum distribution in the direc-
tion of the standing wave.

There are several systematic uncertainties in the experi-
ment, which we now summarize. There are two systematic
uncertainties in the determination of the momentum distri-
butions. The first is the spatial calibration of the imaging
system. The second arises from the ambiguity in the drift
time due to motion occurring during different interaction
times. These two factors give an overall systematic un-
certainty of =4% in the momentum measurements. The
uncertainty in the stochasticity paramekers = 10%, with
the largest contributions due to the measurement of laser
beam profile and absolute power. The reduction in the ef-
fective value ofK due to the nonzero temporal width of the
pulses is only6% out to|p/2kk. | = 40, and the effective
value drops off by25% at our maximum detectable mo-
mentum of|p/2hk;| = 80. Additionally, the measured
distribution energies are affected by many factors because
of their sensitivity to high momenta, and in the worst cases
the absolute values may have systematic errors on the or-
der of (20—-30)%. These worst-case errors correspond to pl27k;,

measurements wherg, > 15, since the distribution tails . . .
h the edae of our detection svstem. In these cases IG. 1. Comparison of the momentum distribution evolution
reac g Yy : ' with & = 2.08 for the cases (a)k, = 9.1, (b) K, = 7.9.

quoted energy most likely underestimates the true energytime steps shown are 0 kicks (light solid), 5 kicks (dash-
Finally, we note that our earlier experimental distributionsdot), 10 kicks (bold), 20 kicks (dashed), 45 kicks (dotted), and
had an exaggerated sharp bump at their center, becaus&&kicks (heavy bold). The vertical scale is logarithmic and in
fraction of the atoms, which we conservatively estimate?itrary units.
to be around 20%, were in the = 3 ground state [15].
These atoms did not interact as strongly with the stand- In order to observe the oscillations of the distribution
ing wave, and so they did not diffuse nearly as far as thavidths versusk,, we measured the distribution energies
majority of the atoms in th& = 4 ground state. For the after 35 kicks as a function & for several different values
distributions shown in Fig. 1, we have ensured that nearl@f # . We note that although the theory is given in terms
all the atoms were in thE = 4 ground state before the in- 0f localization lengthl, the presence of nonexponential
teraction with the standing wave by turning off the repumpdistributions at the maxima ab(K,) make meaningful
laser light100 ws after the trapping laser light. For the en- fits of the localization length questionable. However,
ergy data in Fig. 2, th& = 3 ground state is again around the distribution energye scales ag?, so the energy is
20% populated; however, this mixed population leads only? sensible measure of the momentum distributions for
to a systematic reduction in the measured energy (on theomparison with theory. The results are shown in Fig. 2,
order of 20%), and does not affect the locations of the obwhere the energy is plotted againkt. The classical
served peaks. diffusion curve from Eq. (3) is also shown for comparison.
A typical exponentially localized momentum distribu- Because the maxima of the energy curves match for the
tion for K, = 9.1 is shown in Fig. 1(a). This distribution different £ cases, this data shows that these classical
is what one would expect for dynamical localization. Fig-oscillations are present in the quantum kicked rotor and
ure 1(b), which corresponds t, = 7.9, shows a typi- closely match the estimated quantum scaling factor in
cal example of the observed distributions that are clearlfed. (4). The data in Fig. 2 that are “bunched” négr=
not exponential. We observe the exponential distributiond correspond tok = 6.24, which is near the quantum
near the minima oD (K,), while nonexponential distribu- resonance. In this case, as in our earlier work [7], we
tions like that of Fig. 1(b) occur near the maxima. Also, observe little growth in these momentum distributions. We
in the case of Fig. 1(b), it is interesting to note that the mo-2lso note that one may expect the energy data to have
mentum distribution at short and intermediate times growg&n overall growth ask;' because, as noted above, the
significantly more quickly than in the exponentially local- localization length/ grows aquz. However, we do not
izing case of Fig. 1(a). This behavior is especially evidenbbserve this scaling behavior in our experiment, and in
from the “shoulders” on the distribution in Fig. 1(b) after fact our data has a similar overall growth to thafx(K,),
10 kicks, which are absent in the corresponding distribuwhich grows aquz. This observed behavior is a result
tion in Fig. 1(a). At this time, we have no simple expla- of the systematic effects described above, which have the
nation for these distributions. strongest effect on the energies measured at ldtger
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FIG. 2. Oscillations in the growth of energy as a functionkgffor various values ok . Data show the average energy after 35

kicks for the case& = 1.04 (inverted triangles), 1.56 (crossed squares), 2.08 (triangles), 3.12 (open circles), 4.16 (filled squares);
28 kicks fort = 5.20 (filled diamonds); and 24 kicks fdr = 6.24 (filled circles). The solid line is a plot of Eq. (3), the classical
energy diffusion rate, showing the peaks related to anomalous diffusion. The correspondence of energy growth in the quantum
case to the classical diffusion constant is consistent for all valués sfipporting the validity of the scaling of the quantum kick
strengthkKj.
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