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We consider the dynamic escape of a small packet of ultracold atoms launched from within an optical dipole
trap. Based on a theoretical analysis of the underlying nonlinear dynamics, we predict that fractal behavior can
be seen in experimental escape data. These data can be collected by measuring the time-dependent escape rate
for packets launched over a range of angles. This fractal pattern is particularly well resolved below the
Bose-Einstein transition temperature—a direct result of the extreme phase-space localization of the condensate.
We predict that several self-similar layers of this novel fractal should be measurable, and we explain how this
fractal pattern can be predicted and analyzed with recently developed techniques in symbolic dynamics.
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Chaotic transport and escape underlie such diverse phe-
nomena as conductance through ballistic microstructures �1�,
emission from deformed microdisk semiconductor lasers �2�,
molecular scattering and dissociation �3�, celestial transport
�4�, and atomic ionization �5–7�. Although the phase space
for such systems is well known to exhibit fractal features,
these features typically influence experimental data via such
quantities as fractal dimensions, asymptotic decay rates, and
Lyapunov exponents. This paper proposes that ultracold at-
oms could be a valuable experimental tool to observe fine-
scale self-similar fractal features directly.

We have been particularly motivated by the chaotic ion-
ization of hydrogen in applied parallel electric and magnetic
fields, for which a recent theoretical analysis �7� predicts that
the time spectrum for ionization will display a chaos-induced
train of electron pulses. This prediction is based on classical
ionizing trajectories �Fig. 1�a��, which propagate from the
nucleus into the ionization channel, via the Stark saddle.
These trajectories exhibit fractal self-similarity, which is in-
directly reflected in the pulse train. Although these predic-
tions have been recently confirmed by full quantum calcula-
tions �8�, their experimental observation remains unrealized.

In this paper, we consider an alternative chaotic system—
the escape of ultracold atoms in specially tailored optical
dipole traps. We propose that the flexibility and control af-
forded by cold atoms, especially in engineering the initial
state, permit the direct imaging of fractals in the escape dy-
namics. Furthermore, we show how the fine-scale fractal
self-similarity can be understood using a recently developed
symbolic formalism. The fractals studied here result from
homoclinic tangles �10�—a general mechanism for phase-
space transport. Hence this paper suggests that cold atoms
could serve as a unique high-precision experimental probe of
this fundamental mechanism. Finally, the cold atom experi-
ments discussed here are readily feasible with present-day
experimental configurations and could prove easier to realize
than the previously mentioned ionization experiments.

Recent experiments from the Raizen �11� and Davidson
�12� groups have made first steps along these lines. They
independently measured the long-time survival probability
for ultracold atoms escaping through a hole in an optical

billiard, demonstrating the distinction between regular and
chaotic escape dynamics. In contrast, our work focuses on
the short- to intermediate-time dynamics, where fundamen-
tally distinct phenomena, such as fractal self-similarity, are
predicted to appear.

Double-Gaussian trap. We consider a dipole potential
consisting of two overlapping Gaussian wells,

V�x,y� = − V1 exp�− ��x/�1x�2 + �y/�1y�2�/2�

− V2 exp„− ���x − x2�/�2x�2 + �y/�2y�2�/2… , �1�

as shown in Fig. 1�b�. This potential can be created by two
red-detuned, far-off-resonant Gaussian beams; atomic mo-
tion can be further restricted transverse to the xy plane by a
uniform laser sheet. Here, we take �1x=0.18, �1y =0.24,
�2x=1.08, �2y =0.24, x2=0.72 �measured in millimeters�, and
V1=V2=35.5 �measured in recoil energies Er=�2kL

2 /2mRb
=h�3.77 kHz, where �=2� /kL=780.2 nm for the D2 tran-
sition of 87Rb.� The double-Gaussian potential shares several
features in common with the hydrogen potential in Fig. 1�a�.
The “primary” Gaussian centered at the origin is analogous
to the Coulomb well, the elongated “secondary” Gaussian on
the right is analogous to the ionization channel, and the
saddle connecting the two Gaussian wells is analogous to the
Stark saddle. We are interested in the transport of atoms from
the primary well into the secondary well. Figure 1�b� shows
two representative trajectories that move away from the ori-

FIG. 1. �Color online� �a� The potential energy for a hydrogenic
electron in applied parallel electric and magnetic fields. Two ioniz-
ing trajectories are shown. �b� The double-Gaussian potential.
Gaussian widths are indicated by the dashed ellipses.

PHYSICAL REVIEW A 76, 031403�R� �2007�

RAPID COMMUNICATIONS

1050-2947/2007/76�3�/031403�4� ©2007 The American Physical Society031403-1

http://dx.doi.org/10.1103/PhysRevA.76.031403


gin with initial speed 4.12 cm/s, pass over an unstable peri-
odic orbit �PO� near the saddle, and then strike a resonant
laser sheet �the vertical dashed line.� This sheet forms a de-
tection line—upon striking the line, an atom scatters many
resonant photons, providing a detectable measure of escape
time as well as pushing the atom out of the trap, preventing
its return into the primary well.

The sharp curves in Fig. 2�a� show the time for a trajec-
tory with initial speed 4.12 cm/s �energy −14.9Er� to move
from the origin to the detection line, as a function of launch
angle �, measured in radians relative to the positive x axis.
The resulting escape-time plot is highly singular, with nu-
merous “icicles” whose edges tend toward infinity. These
icicles exhibit a self-similar fractal pattern, common in cha-
otic escape and scattering �9�.

A proposed experiment to measure self-similar patterns in
the escape-time plot. We consider a small Gaussian packet of
ultracold atoms launched from the origin with speed
4.12 cm/s and �=2.04 �the right line in Fig. 2�a��. The sub-
sequent flux of atomic trajectories at the detection line is
then computed as a function of time. Figure 2�b� shows this
flux for an initial thermal packet that occupies a phase space
area 500 times Planck’s constant in both the x and y degrees
of freedom �which corresponds here to a temperature T
=75 nK�. Figure 2�c�, on the other hand, uses a packet that
occupies a single Planck cell, appropriate for a pure dilute
Bose-Einstein condensate �BEC� in the regime of negligible
atom-atom interactions and T�0 �13�. The condensate
packet closely follows the trajectory in Fig. 1�b�, exiting as a
sharp pulse at 160 ms, near the bottom of the �=2.04 icicle
in Fig. 2�a�. The thermal packet also produces a pulse at
160 ms, but its larger phase-space extent populates neighbor-
ing icicles, thereby producing the additional pulses in Fig.
2�b�. For example, the large initial pulse is due to trajectories
associated with the rightmost icicle in Fig. 2�a�.

By repeating the preceding computation for different
launch angles of the thermal packet, we obtain the aggregate
data in Fig. 2�a�, where the shading records the atomic flux
as a function of arrival time and the packet’s launch angle.
Figure 2�b� then corresponds to the vertical slice through
Fig. 2�a� at �=2.04. The thermal data appear as a blurred

version of the sharp escape-time plot. For example, the left
and right icicles are associated with prominent dark patches
and in between a few wispy patches can be associated with
the bottoms of other icicles. Overall, however, the intricate
icicle structure is poorly resolved by the thermal data.

A remarkable increase in resolution occurs below the
BEC transition at T�0, shown in Fig. 3�i�. Many icicles are
now clearly resolved, a direct consequence of the high phase-
space localization afforded by the condensate.

Self-similarity of the escape-time data. The first column of
Fig. 3 shows three distinct intervals of �. The upper plots in
each pair look remarkably similar, and icicles in one plot can
be identified with icicles in the other two. In fact, this pattern
of icicles occurs on all scales throughout the escape-time
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FIG. 2. �Color online� �a� Escape-time plot. The two vertical
lines mark the launch angles for the trajectories in Fig. 1�b�. Parts
�b� and �c� show the flux of atoms at the detection line for two
Gaussian ensembles launched at �=2.04. The sharp pulse in �c�
indicates that the Gaussian packet remains a well-localized packet
throughout its trajectory, whereas the “train” of pulses in �b� indi-
cates substantial breakup and mixing. The position and momentum
widths of the initial ensembles are given in units of mm and recoil
momenta �pr=�kL=mRb�5.88 mm/s for the 87Rb D2 transition�.
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FIG. 3. �Color online� Escape time for a minimum uncertainty
packet �BEC� over six angular intervals. The initial speed
�4.12 cm/s� and widths �x, �y, �px, and �py are as in Fig. 2�c�.
�To check dependence on the initial width, we doubled the width
and found a noticeable, but relatively small, impact on the fractal
resolution.� Each escape-time plot is matched below by its corre-
sponding discrete-escape-time plot.
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plot. One of our principal observations is that these struc-
tures are resolved by the overlaid BEC data. The icicles look
progressively more blurred as we move down the column
because the interval width is decreasing and the escape time
�and corresponding dispersion� is increasing.

The second column of Fig. 3 shows another pattern that
also occurs on all scales throughout the same escape-time
plot. As we will see, many such repeated patterns, or tem-
plates, exist in the escape-time plot. Within a given template,
all other templates can be found on smaller scales in an in-
finitely recursive nesting. Our computations predict that sev-
eral nested layers will be experimentally visible.

Experimentally, the observation of these phenomena will
not be easy but certainly feasible. With a 1.06 �m laser, the
above trap geometry can be realized with about 80 W of
power. With this detuning, a 87Rb atom has at most a 4%
probability of spontaneous scattering over a half second. Ac-
celeration of the atoms to the initial velocity of 4.12 cm/s is
easily accomplished; for example, a chirped, one-
dimensional optical lattice of 785 nm light with 50 mW of
single-beam power and beam radius w0=100 �m can accel-
erate the atoms in about 1.6 ms with negligible �	1% � prob-
ability of spontaneous scattering and heating due to energy-
band transitions. The primary difficulty is the subrecoil
initial conditions required, even in the thermal case. How-
ever, a standard expanded BEC should suffice.

Theoretical foundations of the fractal structure. The self-
similar fractal data can be described with recently developed
symbolic tools �14�. We first specify a two-dimensional sur-
face of section in the xypxpy-phase space by fixing the en-
ergy E at −14.9Er and setting y=0. Thus, every time a tra-
jectory passes through the x axis, we can record �x , px�,
defining a Poincaré map on the surface of section �Fig. 4�.
The vertical line L0 at x=0 consists of all points at the origin
moving outward with arbitrary �. The point zX is the unstable
fixed point equal to the intersection of the unstable periodic
orbit in Fig. 1�b� with the surface of section. Attached to zX
are its stable S �thick� and unstable U �thin� manifolds, con-
sisting of all points that converge to zX in the forward and
backward directions, respectively. These manifolds intersect

an infinite number of times, forming an intricate pattern
called a homoclinic tangle �10,14–16�. The stable and un-
stable segments connecting zX to the point P0 bound the
shaded region called the “complex.”

Escape from the complex occurs via escape lobes En, de-
fined as the regions bounded by the stable and unstable seg-
ments connecting Pn to Qn. The lobe E−1, inside the com-
plex, maps to E0, outside the complex. Once in E0, a point
then maps to E1, E2, etc., eventually passing into the right
well. The lobes E−k contain all points that escape in k iter-
ates. These lobes become progressively more stretched and
folded as k increases. �The analogous lobes Cn control cap-
ture into the complex.� Note that we can choose physical
parameters that make the lobes large compared to Planck’s
constant h �Fig. 4�.

The lower plot of each pair in Fig. 3 shows the number of
iterates to escape the complex as a function of �. Each icicle
is straightened into a constant escape segment. A segment
that escapes on iterate k is an intersection between E−k and
L0. For example, the segment at iterate two in Fig. 3�i� is the
intersection with E−2 in Fig. 4.

Reference �14� introduces a symbolic technique, called
homotopic lobe dynamics, to compute the structure of escape
segments based on the tangle topology. �See also Ref. �15�.�
We summarize the results obtained from applying this tech-
nique to the tangle in Fig. 4.

The structure of the discrete-escape-time plot up to a
given iterate n is specified by a string �n of symbols in the set
�c1 ,c2 ,a ,b , f ,u0 ,u1 ,u2 , . . . � as well as their inverses—e.g.,
c1

−1. The first string is �1=u1b−1u0. All subsequent strings can
be obtained from the first by mapping each symbol forward
according to the substitution rules

c1 � c2, c2 � f−1u0au0
−1f , �2a�

a � b−1u0
−1b, f � c1

−1u0
−1f , �2b�

un � un+1, b � b−1u0
−1f , �2c�

using the standard convention for iterating inverses—e.g.,
b−1� f−1u0b. For example, the first four strings are

�1 = u1b−1u0, �3a�

�2 = u2f−1u0bu1, �3b�

�3 = u3f−1u0c1u1b−1u0
−1fu2, �3c�

�4 = u4f−1u0c1u1c2u2f−1u0bu1
−1c1

−1u0
−1fu3. �3d�

An �n string encodes the discrete-escape-time plot as fol-
lows. Each appearance of u0

±1 in �n �underlined for emphasis�
represents a segment that escapes at iterate n. For example,
the u0 factor in Eq. �3a� corresponds to the escape segment at
iterate one in Fig. 3�i�. This u0 factor then maps forward to
u1 in Eq. �3b�. In general, we see that each uk

±1 in �n repre-
sents a segment that escapes at iterate n−k. In Eq. �3b�,
another u0 factor has appeared, corresponding to the escape
segment at iterate two. This segment is to the left of the first
segment, just as the u0 factor in Eq. �3b� is to the left of the
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FIG. 4. �Color online� Surface of section with homoclinic
tangle. The left rectangle has area 10 times Planck’s constant.
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u1 factor. In general, the left-right ordering of uk
±1symbols in

�n represents the left-right ordering of segments in the
discrete-escape-time plot. On the next two iterates, two new
u0 factors appear in Eq. �3c� and three more appear in Eq.
�3d�, in agreement with Fig. 3�i�.

All other symbols besides uk
±1 represent gaps between ad-

jacent escape segments. For example, b−1 in Eq. �3a� repre-
sents the gap b−1�i� in Fig. 3, and b−1 in Eq. �3c� represents
the gap b−1�ii� in Figs. 3�i� and 3�ii�. The string �5 will also
contain a b−1 factor, representing the gap b−1�iii� in Figs.
3�ii� and 3�iii�. Since each b−1 factor generates exactly the
same string of symbols under Eqs. �2�, each gap labeled b−1

in Fig. 3 contains the same pattern of escape segments. This
means that b−1 corresponds to a particular template. Each
symbol �c1 ,c2 ,a ,b , f� thus generates its own template, with
inverse symbols generating reflected templates. For example,
mapping f−1 forward 3 times yields f−1u0c1u1c2u2f−1u0au0

−1f .
The reader may verify that this equation describes the seg-
ments up to iterates 5, 7, and 6 in Figs. 3�a�–3�c�. Note that
different experimental parameters will yield different alge-
braic rules and different templates.

This algebraic formalism computes a minimal set of es-

cape segments, but generally not all segments. That is, at
later times, we typically find additional segments in the nu-
merics. This illustrates what has previously been called an
epistrophic fractal �16�. Nevertheless, unpredicted segments
can be accommodated within an updated algebraic formal-
ism, as explained in Ref. �14�.

Conclusions. We predict that experiments on the
intermediate-time escape dynamics of ultracold atoms from
an optical trap can directly image self-similar fractals. The
resolution is particularly good when using a minimum uncer-
tainty packet �BEC�. The fractal structure depends on the
topology of homoclinic tangles, which are common to nu-
merous chaotic systems. Such experiments would thus pro-
vide a new laboratory tool for the study of an important
chaotic mechanism. Similarly, an improved understanding of
the chaotic escape pathways of atoms from optical traps
could be relevant for the understanding of mixing and ther-
malization in traps and for the control and coherent emission
of atomic wave packets. Finally, the dependence of these
fractals on atom density could serve as an interesting probe
of atom-atom interactions, a subject to be explored in future
work.
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